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ABSTRACT

Studies of the luminosity evolution of optical Quasi{Stellar Ob jects (QSOs)

suggest that a large numb er of normal{lo oking galaxies to day have a central

massive black hole. These galaxies once contained Active Galactic Nuclei (AGN),

but a dwindling fuel supply forced the central engine to fade. If one of these

galaxies happ ens to b e close enough, it might b e p ossible to detect the central

black hole by the e�ects it has on the kinematics and surface density of stars in

the galactic nucleus. But, for the ma jority of galaxies, it is not feasible to observe

these e�ects due to their great distance.

Not feasible, that is, until the black hole disrupts a passing star. The debris

of the star will form an accretion disk around the black hole. The galactic nucleus

will then b ecome a reb orn AGN. It is then p ossible to detect the black hole by the

sudden app earance of a compact source of extreme UV and X{ray photons at the

center of a galaxy. Broad, double{p eaked emission lines may also app ear, giving

conclusive evidence that an accretion disk has formed around a massive black hole.

A survey to detect 
ares from galactic nuclei resulting from tidally{disrupted stars

could p ossibly answer whether or not most galaxies go through an AGN phase.

In this work, we will use Smo othed Particle Hydro dynamics (SPH) simulations

to remove much of the uncertainty that existed in previous work on the tidal

disruption of stars. These works were forced to assume that stars which passed

inside the Ro che limit of a black hole were completely accreted by the black hole.

We will replace this assumption with the results of our SPH simulations, and �nd

that previous works overestimated the rate at which gas is stripp ed from stars by a

factor of two. We will then review the observational consequences of a disruption

event, and consider two cases in which such an event may have b een witnessed.
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Chapter 1

INTRODUCTION

Within the inner parsecs of an Active Galactic Nucleus (AGN), p ower comparable

to that radiated by the entire host galaxy is released. An exotic pro cess is required

in the central region of an AGN that is capable of such e�cient conversion of mass

to energy. The leading candidate for this pro cess is an accretion disk around a

massive black hole. It is exp ected that � 10% of the rest mass energy of accreted

material will b e radiated. At this e�ciency, ab out 1 M

�

of material must b e

accreted p er year to achieve a total luminosity of 10

45

ergs = s. The tidal disruption

of stars by the massive black hole at the center of the AGN was prop osed by

Hills (1975) as a source of the required material. Subsequent research found that

although tidal debris is a source for fuel, such debris cannot provide material at the

rate required for the more luminous AGNs. For these ob jects, the central density

is so great that stars are more likely to b e destroyed by colliding with other stars

than to b e disrupted by the black hole. It app eared that tidal disruption was only

of imp ortance in the less massive of Seyfert galaxies, and work on this sub ject was

minimal after the early 1980s.
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In the later 1980s, detailed studies of the optical luminosity evolution of

AGN (e.g., Boyle et al. 1987) con�rmed the already held b elief that although the

space density of AGN in the past was comparable to that in the present day, the

luminosity function had evolved with time. One way to explain the di�erences

b etween the past and present luminosity function is to assume that AGNs b ecome

fainter with time. In this mo del, all AGN were formed b efore a redshift of z = 2 : 2

and have lived on into the present in the form of Seyferts. Due to the long lifetime

of these AGN, the central black hole is able to grow to a present day mass of order

10

9

M

�

or greater. With a black hole mass this large, the tidal disruption of stars

do es not contribute mass to b e accreted by the black hole, as the radius at which

stars are disrupted is actually inside the event horizon of the black hole. Stars

simply fall into the black hole without disrupting. Again stellar collisions app ear to

b e the dominant source of the material which is accreted by the central black hole.

A problem with this scenario, however, is that mo dern AGN do not to app ear, on

average, to have the large black hole mass (10

9

M

�

) predicted.

However, there is an alternative interpretation of the results of Boyle et al .

Instead of a single p opulation of long{lived AGN, it is p ossible to explain the

observations by hyp othesizing generation after generation of short{lived AGN,

with the characteristic luminosity decreasing in later generations. The AGN seen

to day are just the latest generation of this progression. The prop osed lifetime of

a given AGN is � 10

7

years, during which time the central black hole grows to a

mass � 10

7

M

�

. A consequence of this mo del is that many galaxies to day should

have a massive central black hole. Since the ma jority of these galaxies are not

observed to have an active nucleus, detecting the presence of the central black

hole would app ear to b e a problem. A solution to this problem was suggested by

Rees (1988). He noted that an inactive AGN will b ecome active when the central
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black hole disrupts a star and accretes the debris. He estimated that the accretion

time scale for the debris was of order years, while the interval b etween disruption

events ranges from 10

2

{10

4

years, dep ending on the mass of the black hole and the

density and velo city disp ersion of the stellar nucleus. This means that these \dead

quasars" sp end less than 1% of the time in an active state. But this also means it is

p ossible to detect the massive black holes around us by searching for galactic nuclei

which suddenly b ecome active. If black holes could b e detected this way in many

galaxies, it would lend considerable supp ort to the short{lived AGN hyp othesis.

Rees was able to give a rough idea of what a reb orn AGN would lo ok like.

But uncertainties ab out the physics of the disruption of the star and the accretion

of the resulting debris needed to b e addressed. For example, in the ma jority of

previous work on the tidal disruption of stars, it was assumed that the star was

disrupted if it passed within a threshold distance from the black hole. All of the

debris would then b e accreted by the black hole. This assumption, which we will

call the hard{sphere assumption, was a simpli�cation that was necessary at the

time b ecause it was not yet p ossible to numerically simulate the disruption of a

star. Now, with mo dern high{sp eed computers and a numerical technique known

as Smo othed Particle Hydro dynamics (SPH), it is p ossible to mo del the disruption

pro cess in su�cient detail. The particular SPH metho d which we will employ is

describ ed in Chapter 2. The disruption of a star is an extremely dynamic event,

and our SPH metho d uses several original mo di�cations in order to handle the

extreme conditions which arise. With the results from our SPH simulations we will

then replace the hard{sphere assumption with numerically derived cross sections,

which will b e presented in Chapter 3. This achievement will remove one degree of

uncertainty which existed in previous work on the tidal disruption of stars.
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We will then pro ceed in Chapter 4 to re{examine the problem of the disruption

of stars in a stellar cluster surrounding a massive black hole, with an emphasis on

the impact of using our numerical results in place of the hard{sphere assumption

used previously. Brie
y, we �nd that previous work overestimated the rate at which

gas is stripp ed from stars by a factor of two.

Next we consider some of the observable consequences of a tidally disrupted

star. The actual disruption of the star is unlikely to b e observed, as the duration

of this event is only hours, and in the ma jority of cases the star will b e quickly

pulled apart and co ol. So one must wait until the debris is accreted by the black

hole in order to tell that a star has b een disrupted. Using the results from our SPH

calculations, it is p ossible to estimate the time scale for the debris to b e accreted.

We �nd our results con�rm earlier estimates by other workers in that there will b e

a 
are which lasts for approximately one year after the star is disrupted.

We next review two pap ers that b oth claim to have observed an outburst from

a galactic nucleus which was triggered by the tidal disruption of a star. Finally, in

Chapter 5, we review the ma jor �ndings of this work and comment on what future

work could b e done to improve our understanding of the role of the tidal disruption

of stars in the formation and evolution of active galactic nuclei.
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Chapter 2

A METHOD OF SMOOTHED

PARTICLE HYDRODYNAMICS

USING SPHEROIDAL

KERNELS

The development of smo othed particle hydro dynamics (SPH) in the late 70's (Lucy

1977; Gingold & Monaghan 1977) was in resp onse to the need for a numerical

metho d which could e�ciently mo del three{dimensional systems which lack

symmetry and p ossess large voids. Traditional �nite{di�erence techniques require

a grid to encompass the system under study. In three dimensions, the numb er of

grid elements can quickly make a problem intractable, so symmetry arguments are

necessary to reduce the problem to a two dimensional calculation. In addition,

memory is wasted on grid elements representing empty regions. SPH overcomes

these problems by representing the 
uid with a �nite numb er of particles which
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act as interp olating p oints for quantities such as density and internal energy. Each

particle moves in resp onse to particle{particle forces like gravity and gas pressure.

As the particles move, so do es the interp olation mesh. No memory is used to

represent empty spaces, and since the interp olation mesh moves with the 
uid,

SPH is able to e�ectively mo del systems which deform from a simple symmetry.

With the advent of e�cient neighb or{�nding schemes, SPH simulations routinely

use 10

4

{10

5

particles on desktop workstations. For a recent review of SPH, consult

Monaghan (1992) and the references therein.

All SPH co des employ a smo othing kernel in order to interp olate physical

quantities using the particles as the interp olating p oints. In almost all previous

co des, the smo othing kernel was a spherically symmetric function W . One requires

that W can b e normalized and that it is of �nite extent. The smo othing length h

serves as a measure of the extent over which W is nonzero. The density at a p oint

in space, for example, can then b e de�ned as

� ( ~r ) =

N

X

j =1

m

j

W ( ~r � ~r

j

; h

j

) ; (2.1)

where N is the total numb er of particles. This expression, however, is useless

computationally b ecause the ma jority of the particles will not contribute to

the sum, as W is zero for distances greater than a few times h . By using

neighb or{�nding routines the numb er of particles included in the ab ove sum is

reduced to just the contributing particles. Common practice is to initially p osition

the particles on a regular lattice. The smo othing length h of each particle is then

set as to enclose the desired numb er of neighb ors, typically 40{80. This numb er of

neighb ors is necessary to insure the accuracy of the interp olation, and results in h

b eing approximately equal to the spacing of the particles in the grid.

Now consider the following example { a constant density, self-gravitating
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spherical cloud of gas which b egins to contract. Let the initial radius of the cloud

b e R and let all particles have an initial smo othing length of h

0

. As the cloud

contracts, the particles are brought closer together, increasing the numb er of

neighb ors for each particle and slowing the simulation down. And at some p oint,

the size of the cloud will b egin to approach h

0

, meaning there is e�ectively one

resolution element across the entire cloud! In order to address this problem, almost

all SPH co des dynamically adjust the size of the kernel in order to maintain a

constant numb er of neighb ors. This has the b ene�ts of improving spatial resolution

as well as sp eeding up the simulation.

Now imagine that instead of collapsing in a spherically{symmetric manner, the

gas cloud collapses along a preferential axis, p erhaps due to net angular momentum.

Eventually the sphere will deform into a 
attened disk shap e. In order to maintain

a constant numb er of neighb ors, the kernel will have to shrink to a fraction of the

height of the disk. If the disk is su�ciently 
attened, however, this may result in

a kernel that is not large enough to extend to any other particles within the plane

of the disk, meaning there is no pressure force b etween these particles. The only

pressure forces will b e along the axis on collapse, which is clearly wrong. To address

this problem, one could constrain the kernel to always b e large enough to include

these lateral particles. Consequently, however, the smo othing length would b ecome

comparable to the thickness of the disk, and spatial resolution would b e sacri�ced.

Therefore, with a kernel that can only deform in a spherically{symmetric manner,

it is imp ossible to mo del the evolution of the system once it reaches the disk state.

In order to quantitatively demonstrate the p oint raised ab ove, consider the

following example. Let a zero{temp erature, constant{density cloud collapse along
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the z {axis with a homologous velo city pro�le given by

v

z

( z ; t ) = � v

0

 

z

z

m

( t )

!

;

z

m

( t ) = z

0

� v

0

t : (2.2)

Here, z

0

is the initial height of the cloud, and z

m

( t ) is the maximum extent of the

cloud in the z {direction as a function of time. Let the initial separation of the

particles b e h

0

, which will also b e the initial smo othing length for each particle. In

addition, give each particle a mass of m . We now want to determine how to change

h in order to maintain a constant numb er of neighb ors N

neig h

for each particle. A

crude measure of the density at a given particle can b e written

� '

mN

neig h

h

3

: (2.3)

In order to keep N

neig h

constant we require that h / �

� 1 = 3

. For a given particle we

can then write

h ( t ) = h

0

 

�

0

� ( t )

!

1 = 3

; (2.4)

where h

0

and �

0

are the initial smo othing length and density of the particle. Taking

the time derivative of this expression and applying some algebra gives

dh ( t )

dt

=

� h ( t )

3

 

1

� ( t )

d� ( t )

dt

!

: (2.5)

By the use of the continuity equation, we end up with the following expression for

the time evolution of h

dh ( t )

dt

=

h ( t )

3

r � ~v : (2.6)

In the example under consideration, the only particle motion is along the z {axis

(since the cloud is zero temp erature), and equation (2.6) reduces to

dh ( t )

dt

= h ( t )

�

1

3

�

 

@ v

z

( z ; t )

@ z

!

;
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= h ( t )

�

� v

0

z

0

� v

0

t

�

: (2.7)

Integrating this equation gives the time evolution of h

h ( t )

h

0

=

"

z

m

( t )

z

0

#

1 = 3

: (2.8)

Because we require the smo othing kernel W to b e of �nite extent, it will have

a value of zero for distances greater than �h , where � is typically two. When the

cloud has shrunk by a factor of �

3

in the z {direction (i.e., ( z

m

( t ) =z

0

) = �

3

), one

�nds h = h

0

=� . Since the particles are not moving in the x { y plane, the separation

of the particles in the x { y plane will b e h

0

. Therefore, the particles are no longer

in contact in the x { y plane. Adding particles will not help the situation, since the

right hand side of equation (2.8) do es not dep end on h

0

. For the typical value of

� = 2, the greatest density ratio which can b e mo deled is a factor of eight. This

means that one can still mo del adiabatic sho cks, where the maximum density

enhancement is given by

�

�

0

=


 + 1


 � 1

; (2.9)

where 
 is the ratio of sp eci�c heats. Typical values for 
 are 5 = 3 and 4 = 3, leading

to a maximum density enhancement of 4 and 7, resp ectively. In summary, a co de

using spherical kernels encounters severe problems when attempting to mo del a

system that b ecomes substantially compressed in one direction.

To address this problem, we have develop ed an SPH co de which allows the

initially spherical kernels to deform into a spheroid shap e. In the ab ove example,

the size of the kernel in the direction of collapse would evolve indep endently of

the size of the kernel parallel to the x { y plane. This allows the relative spatial

resolution in the z {direction to b e maintained without particles losing lateral

contact, as in the case of spherical kernels. Our metho d is directly applicable to a
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numb er of astrophysical problems involving nonspherically symmetric events, such

as head{on stellar collisions or tidal disruptions.

2.1 Implementing Spheroidal Kernels

2.1.1 Intro duction

The metho d describ ed in this pap er is a sp ecial case of a more general metho d

of SPH we are developing. In this more general case, the smo othing kernel is a

triaxial ellipsoid which can b e oriented arbitrarily in three space. The information

describing this kernel can b e conveniently contained within a second{order, real,

symmetric tensor H

H =

0

B

B

B

@

h

xx

h

xy

h

xz

h

xy

h

y y

h

y z

h

xz

h

y z

h

z z

1

C

C

C

A

: (2.10)

The eigenvectors of this tensor are the directions of the three axes of the ellipsoid,

and the corresp onding eigenvalues are the extent of the ellipsoid along each axis.

To use this smo othing kernel in a simulation, one would initially set the tensor H

of each particle according to the geometry of the problem. If spherical kernels were

desired initially, then one would set h

xx

= h

y y

= h

z z

= h

0

, where h

0

is the initial

smo othing length, and h

xy

= h

xz

= h

y z

= 0. However, with ellipsoidal kernels, one

has more freedom in setting up the initial conditions than one has with spherical

kernels. If the initial con�guration was a disk, then one could pack ellipsoids

together instead of spheres, reducing the numb er of particles necessary to achieve

a given spatial resolution across the thickness of the disk. During the simulation,

one would mo dify H for a given particle according to the lo cal 
ow of neighb oring
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particles in order to maintain a relatively constant numb er of neighb ors. Given the

numb er of degrees of freedom for the smo othing kernel, a co de using ellipsoidal

kernels would provide excellent spatial resolution even if the system underwent

extreme deformation. We are currently working on a version of the co de which

implements ellipsoidal kernels.

Meanwhile, we have found that a less complex version of the co de is su�cient

for the class of problems we are interested in. Because the tensor H is a real,

symmetric tensor, there exists a reference frame in which it is a diagonal matrix.

Let us cho ose the frame in which we will compute the problem to b e the frame

which diagonalizes H . Now let us assume that the frame which diagonalizes H

remains constant throughout the simulation. This reduces the complexity of the

problem b ecause H is always a diagonal matrix. In addition, imp ose the constraint

that h

xx

= h

y y

at all times. The resulting shap e of the kernel is a spheroid, and it

is well suited for mo deling systems that deform in predominately one direction. In

the case of the tidal disruption of a star, for example, the star is mo destly deformed

in the orbital plane as it passes the black hole. Simultaneously, the star is savagely

compressed in the direction p erp endicular to the orbital plane, forming a thin disk.

By cho osing the x { y plane to b e the orbital plane, we cause the ma jor compression

of the star to b e along the z {axis. The spheroidal kernel can change its size along

the z {axis ( h

z z

) indep endent of its size in the x { y plane ( h

xx

= h

y y

). This allows one

to maintain a constant numb er of neighb ors while also ensuring contact with other

particles in the plane of the disk, overcoming the problems inherent to spherical

kernels.
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2.1.2 Calculating the Value of the Kernel and its Derivative

The mo di�cations required to an existing SPH co de in order to implement

spheroid kernels are minimal. The co de must �rst b e mo di�ed to take into account

the fact that the kernel function and its derivative now dep end on ~r and not just r .

A spheroid is pro duced by rotating an ellipse ab out either its ma jor or minor axis.

Let this axis of rotation b e along the z {axis. The extent of the spheroid along the

x {, y {, and z {axes will b e represented by h

xx

, h

y y

, and h

z z

, resp ectively. In this

case, the second{order tensor H intro duced in the previous section has the form

H =

0

B

B

B

@

h

xx

0 0

0 h

y y

0

0 0 h

z z

1

C

C

C

A

: (2.11)

Due to the fact that we have constrained the kernel to b e a spheroid, h

xx

= h

y y

at

all times, and also note that for the case of a spherical kernel, h

xx

= h

y y

= h

z z

.

De�ne the smo othing kernel to b e W ( ~r ; H ). Furthermore, cho ose a function

W

0

( v ) which satis�es the normal criteria for a spherical smo othing kernel, i.e., of

�nite extent and normalizable. We want to construct our smo othing kernel W so

that surfaces of constant W lie on spheroids. This can b e achieved by de�ning

v

2

=

�

x

h

xx

�

2

+

 

y

h

y y

!

2

+

�

z

h

z z

�

2

; (2.12)

W ( ~r ; H ) =

W

0

( v )

h

xx

h

y y

h

z z

: (2.13)

It is assumed in equation (2.13) that W

0

has b een prop erly normalized, so that

1

h

xx

h

y y

h

z z

Z

1

0

W

0

( v ) v

2

dv = 1 : (2.14)

To compute the gradient of W , we must compute its comp onents along the x {, y {,

and z {axes. For example, the comp onent along the x {axis can b e computed by
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using the fact that

@ W

@ x

=

@ W

@ v

@ v

@ x

; (2.15)

from which one obtains

@ W

@ x

=

x

v h

xx

2

@ W

@ v

=

x

v h

xx

2

�

1

h

xx

h

y y

h

z z

@ W

0

@ v

�

: (2.16)

Similarly one can obtain equations for

@ W

@ y

and

@ W

@ z

.

2.1.3 Evaluating Particle Forces

In order for any SPH co de to run e�ciently, it must use a fast metho d of

identifying the neighb ors of a given particle. In a co de which uses spherical kernels,

the test to �nd a neighb or is to see if the distance b etween the two particles is less

than the radial extent r

cut

of the kernel. For spheroidal kernels, the situation is

slightly more complicated. A �rst pass is made to �nd p otential neighb ors, using

the largest of h

xx

and h

z z

to compute r

cut

, where r

cut

( h ) = �h , with � typically

having a value of two. This value of r

cut

is then supplied as the cuto� radius for the

same neighb or{�nding routine that was used in a spherical co de. This pro duces

a list of particles which must b e further �ltered to �nd the true neighb ors. To

do this, one computes the variables v

i

and v

j

for particles i and j using equation

(2.12). If either W ( v

i

) or W ( v

j

) is nonzero, then the interaction b etween the two

particles is calculated; otherwise, the pair is ignored.

In order conserve linear momentum lo cally, the forces computed b etween

two particles must ob ey Newton's third law. To symmeterize the forces b etween

particles, we use the following expressions when computing the interaction b etween

two particles i and j (Hernquist & Katz 1989)

W

ij

=

1

2

f W

i

( ~r ; H

i

) + W

j

( ~r ; H

j

) g ; (2.17)
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r W

ij

=

1

2

n

r

i

W

i

( ~r ; H

i

) + r

j

W

j

( ~r ; H

j

)

o

; (2.18)

~r = ~r

i

� ~r

j

: (2.19)

It should b e noted that angular momentum is conserved when using spherical

kernels. This is b ecause the force on one particle due to the other is parallel to

the vector joining the two particles, yielding a torque

~

T / ~r �

~

F = 0. In a co de

using spheroidal kernels this is not necessarily the case. If h

xx

6= h

z z

, then from

the expressions for

@ W

@ x

and

@ W

@ z

given by equation (2.16), one �nds that the force

b etween two particles is no longer parallel to the vector joining the two particles,

leading to a net torque ab out the x { and y {axes. Since h

xx

= h

y y

, however, there

will b e no net torque ab out the z {axis.

Now consider a particle which is surrounded by a sea of copies of itself, with

h

xx

6= h

z z

. The torque on the particle is a vector quantity dep ending on the vector

b etween the particle and its neighb or. If one sums over all neighb ors, then the net

torque will b e zero. Can one exp ect the same to b e true in a real computational

problem, where the particle will b e surrounded by particles which have di�erent

parameters than itself ? As long as physical quantities do not vary excessively over

a smo othing length in the x { or y {directions, then cancelation should o ccur to

some degree. This requirement will b e met in most situations, since the smo othing

length of the kernel should b e small compared to interesting physical scales in the

problem. The particles near the b oundary of the simulation will not b e completely

surrounded by neighb ors, and the least cancelation will most likely o ccur for these

particles. Whenever p ossible, one should arrange for the total angular momentum

vector to b e along the z {axis, since no comp onent of the net torque b etween

particles is along the z {axis. In many problems, the direction of predominant

collapse is parallel to the axis of rotation, so it works out that spheroidal kernels
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allow one to have improved spatial resolution along the direction of collapse and

simultaneously conserve angular momentum exactly.

There is a further complication to consider when calculating the self{gravity

of the gas particles. In the case of spherical kernels, the gravitational force is

always along the vector b etween the centers of the two particles, leading to no

net torque. With spheroidal kernels, the mass distribution within the kernel

may no longer b e spherically symmetric, leading to a net torque b etween the

two particles. Fortunately, this torque should largely cancel out, for reasons

discussed in the preceding paragraph. The b est approach we have found for

calculating the gravitational force b etween two overlapping particles is to use a

gravitational softening parameter � , as used in traditional N{b o dy co des. In the

case of the tidal disruption of a star by massive black hole, we also �nd that the

total angular momentum for the system is conserved to b etter than 1%, so it is

p ossible to pro duce quality results using this assumption. Nevertheless, one should

closely monitor the total angular momentum vector in case this assumption is not

warranted in a particular problem.

2.1.4 Time Evolution of the Tensor H

In a co de using a spherical kernel, it is usually desirable to vary the smo othing

length h for each particle in order to maintain a constant numb er of neighb ors

and to improve spatial resolution. When using spheroidal kernels, b oth h

xx

and

h

z z

can b e indep endently mo di�ed in order to preserve spatial resolution in two

p erp endicular directions. Rememb er that for spheroidal kernels, h

xx

= h

y y

. By

using the strain{rate tensor S , one can measure the deformation of the p ositions of

particles relative to a given particle. This is the information necessary to prop erly
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deform the kernel to maintain spatial resolution and a relatively constant numb er

of neighb ors.

The de�nition of S is

s

ij

=

1

2

 

@ v

i

@ x

j

+

@ v

j

@ x

i

!

: (2.20)

The diagonal elements of S are the magnitude of the relative change of the

proximity of neighb oring particles in the x {, y {, and z {directions. The o�{diagonal

elements supply information necessary to determine the actual directions of

deformation, which may b e along a direction other than the co ordinate axes. We

have assumed that the frame which diagonalizes H do es not change during the

simulation, so we set the o�{diagonal terms of S to b e zero. Writing S for particle

i gives

S

i

=

1

�

i

0

B

B

B

@

s

xx;i

0 0

0 s

y y ;i

0

0 0 s

z z ;i

1

C

C

C

A

; (2.21)

where

s

k k ;i

=

N

neig h

X

j =1

m

j

( v

k ;i

� v

k ;j

)( r W

ij

)

k

: (2.22)

The elements of S

i

have the units of [time

� 1

], so multiplying S

i

by a length

gives the prop er units for

_

H

i

. In order to maintain a spheroidal shap e for the kernel,

we require that h

xx

= h

y y

, which can b e accomplished by requiring

_

h

xx

=

_

h

y y

. The

�nal expression for

_

H

i

is

_

H

i

=

1

�

i

0

B

B

B

@

s

R;i

� h

xx;i

0 0

0 s

R;i

� h

y y ;i

0

0 0 s

z z ;i

� h

z z ;i

1

C

C

C

A

; (2.23)

where

s

R;i

=

1

2

( s

xx;i

+ s

y y ;i

) : (2.24)
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This gives three linear, �rst{order di�erential equations to solve to �nd H for the

next time step, but the equations for h

xx

and h

y y

are identical. So, in practice, one

integrates the equations for h

xx

and h

z z

and then sets h

y y

= h

xx

. Note that we

have found it useful to set a lower limit for h

z z

when an ob ject undergo es extreme

compression. This is b ecause as h

z z

shrinks, the typical time step also b ecomes

smaller. By setting a lower limit on h

z z

, one can sacri�ce some spatial resolution in

order to reduce the running time of the simulation.

Note that there is nothing fundamentally wrong with ignoring the o�{diagonal

terms of S . To see this, a form of

_

h

i

used by a spherical kernel co de can b e written

_

h

i

=

1

3 �

i

( s

xx;i

+ s

y y ;i

+ s

z z ;i

) : (2.25)

In the case of a spherical kernel, one not only ignores the o�{diagonal terms of S ,

but one also averages all three diagonal terms when determining

_

h . The advantage

provided by spheroidal kernels is that one only averages two of the diagonal

elements of S , allowing another degree of freedom in which the kernel can deform.

2.2 Benchmarking Spheroidal and Spherical Kernels

It has b een shown that converting an existing co de to use spheroidal kernels is

not a monumental task. This section will examine the enhanced capabilities gained

by using spheroidal kernels. The applications that have the most to gain are those

which involve mass motion in a preferred direction, such as the head{on collision

of two stars. After the stars contact one another, they will form a thin, disk{like

structure with material sho oting out in the plane of contact. This causes two

con
icting requirements for a spherical kernel co de, as in one direction material is

b eing pressed together while in a p erp endicular direction material is expanding. As
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a consequence, spatial resolution is sacri�ced in one direction, and physical contact

is lost in the other. Spheroidal kernels handle this case b eautifully, compressing in

one direction and expanding in the other.

2.2.1 Homologous Collapse of a Zero{Temp erature Cloud in 1D

A test case which will demonstrate some of the problems a spherical kernel

co de has with the head on collision of two stars is the homologous collapse of a

zero{temp erature cloud in 1D. Initially a cylindrical cloud of constant density is

given a homologous velo city pro�le

v

z

( z ) = � v

z 0

�

z

z

0

�

; (2.26)

where z

0

is the initial height of the cylinder. This problem has a trivial analytic

solution

� ( t ) = �

0

�

z

0

z

0

� v

z 0

t

�

; (2.27)

where �

0

is the initial density. At a given time t , the density is constant through

the cloud.

There is a complication when trying to simulate this particular problem with

an SPH co de. A commonly used form of the energy equation for particle i is

du

i

dt

=

P

i

�

2

i

N

X

j =1

m

j

( ~v

i

� ~v

j

) � r

i

W

ij

+

1

2

N

X

j =1

m

j

�

ij

( ~v

i

� ~v

j

) � r

i

W

ij

; (2.28)

where

�

ij

=

8

<

:
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1
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ij

�

ij

+ �

2

�

2

ij

�

ij

; if ( ~v

i

� ~v

j

) � ( ~r

i

� ~r

j

) � 0 ,

0 ; otherwise ,

(2.29)

and

�

ij

=

h

ij

( ~v

i

� ~v

j

) � ( ~r

i

� ~r

j

)

j ~r

i

� ~r

j

j

2

+ �h

2

ij

; (2.30)
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and h

ij

=

1

2

( h

i

+ h

j

), c

ij

=

1

2

( c

i

+ c

j

), and �

ij

=

1

2

( �

i

+ �

j

), where c

i

is the sp eed

of sound at the p osition of particle i . The constants �

1

and �

2

are of order unity,

and for our test case, the values �

1

= 1 and �

2

= 2 were used. The constant �

is usually of order 10

� 4

, and is included to soften the e�ect of having particles in

close proximity. Note that the �rst sum of equation (2.28) represents the heating

due to P dV work while the second sum is the heating from sho cks.

For now let's ignore the x { and y {comp onents of velo city, and assume constant

h for all particles. Take two neighb oring particles i and j with ( z

i

� z

j

) � �

1 = 2

h .

Substituting the homologous velo city pro�le from equation (2.26) into equation

(2.30) gives, after some algebra,

�

ij

= � h

�

v

z 0

z

0

�

: (2.31)

It follows from equation (2.28) that each particle will receive sho ck heating,

despite the fact that no physical discontinuities exist in the original problem! As a

consequence, the cloud will no longer b e at zero temp erature and the solution for

the central density of the cloud will depart from equation (2.27).

To comp ensate for this undesired heating, one can mo dify equation (2.30) to

b e

�

ij

=

h

ij

� ~v � ( ~r

i

� ~r

j

)

j ~r

i

� ~r

j

j

2

+ �h

2

ij

; (2.32)
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(2.33)

The �rst condition is necessary b ecause we only want to apply this correction to

collapsing material, not expanding. The other two expressions are used in order to
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Fig. 2.1.| Central density of a homologously collapsing cold cloud versus time. The

curves are A { Analytic solution, B { Spheroidal kernels, homologous contraction

removed from viscosity expression, C { Spheroidal kernels, standard viscosity

expression , D { Spherical kernels, mo di�ed viscosity expression (like B), and E

{ Spherical kernels, standard viscosity expression.

avoid dividing by a numb er near zero. This form of �

ij

will b e zero if the material

is undergoing homologous collapse in the z {direction, leading to no sho ck heating

and the b ehavior of the central density following the analytic result.

In Figure 2.1, the results of several di�erent SPH runs are given. The density

at the center of the cylinder is plotted against time. In cases B and C, spheroidal

kernels were used, while in cases D and E, a traditional spherical kernel was used.

The case lab eled A is the analytic result given by equation (2.27). Cases C and E

used the standard expression for arti�cial viscosity forces, while cases B and D used

the alternate expression which takes into account homologous motion. The �rst

p oint demonstrated by Figure 2.1 is that the spheroidal co de follows the analytic
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solution to much higher density than the spherical kernel runs. The spherical

mo dels b egin to overestimate the density around t = 0 : 2, due to the fact that the

kernel size do es not shrink as fast as the height of the cylinder. As a result, more

and more particles contribute to the computation of the density at the center of the

cylinder. At t = 0 : 3 and later, the spherical mo dels yield a density which is lower

than the analytic result. The innermost row of the cloud at this time is shown in

Figure 2.2, which is a slice through y = 0 and is approximately h

y y

thick. Here

the particle kernels are shown as circles with a radius r = h

xx

= h

z z

. The circles

app ear as ellipses in this �gure b ecause of the di�ering plotting scales used for the

x { and y {axes. It is clear that immediately adjacent particles in x are more than

2 h

xx

apart, meaning they are no longer interacting and there is no pressure force

acting in the x {direction. In Figure 2.3, the entire slice through y = 0 is shown

with the same plotting scales as Figure 2.2. The typical h

z z

is now over one quarter

the thickness of the disk, making it imp ossible for the co de to adequately mo del

the physics of the collapse any farther.

In contrast, examine an identical slice from the spheroidal run at the same co de

time ( t = 0 : 3), shown in Figure 2.4. Notice that the particles are in communication

in b oth the x { and z {directions. The ratios of h

z z

=z

max

and h

xx

=x

max

are almost

equal, where z

max

and x

max

are the maximum extent of the disk in the z { and

x {directions. This means that the spatial resolution in the x { and z {directions

has b een preserved even though the cylinder has shrunk by a factor of 16 in

the z {direction. The spheroidal kernel runs deviate from the analytic result for

t > 0 : 312, due to the fact that the initial con�guration was at a small but nonzero

temp erature. The internal energy has grown su�ciently by t = 0 : 312 that the

collapse is no longer homologous. Note that case C, which deviates from the

analytic result �rst, uses the standard expression for arti�cial viscosity. Case B is
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Fig. 2.2.| Innermost row of particles at t = 0 : 3 for a run using spherical kernels.

The collapse is along the z {direction. Due to the di�erent plotting scales used for

the x { and z {axes, the ellipses around each particle are actually circles with radius

r = h

xx

= h

z z

.

Fig. 2.3.| Same as Figure 2.2 except all particles in a slice through y = 0 are

shown.
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Fig. 2.4.| Particle con�guration in the y = 0 plane at t = 0 : 3 for a run using

spheroidal kernels. The collapse is along the z {direction. The ellipses around each

p oint has a height of h

z z

and a width of h

xx

.

able to follow the analytic result to a later time due to the use of the mo di�ed

expression for arti�cial viscosity. The runs were terminated at t = 0 : 316 b ecause,

by this time, the analytic result predicts an in�nite central density.

The test case presented here clearly brings out the disadvantages of using

spherical kernels on problems where a system undergo es substantial collapse in

one direction. The underlying assumption built into any co de which uses spherical

kernels is that the system will deform in an essentially spherical manner. When the

system strays to o far from this assumption then, the simulation is no longer reliable.

By allowing an extra degree of freedom for the deformation of the kernel, spheroidal

kernels are able to extend the utility of smo othed particle hydro dynamics.
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2.2.2 Tidal Disruption of a Star by a Massive Black Hole

The initial motivation to develop a co de using spheroidal kernels came from

our frustration using spherical kernels to mo del stellar disruptions by a massive

black hole. In this problem, a star passes a massive black hole (typically 10

6

M

�

)

on a parab olic orbit which passes within the Ro che radius r

t

. We will de�ne r

t

as

r

t

=

�

M

bh

M

?

�

1 = 3

R

?

: (2.34)

The strength of the encounter can b e parameterized by � = r

t

=r

p

, where r

p

is the

closest approach of the star to the black hole. Qualitatively, one �nds for � > 1

that the star will b e disrupted and lose approximately one{half its material to the

black hole. This pro cess is interesting, as it may provide a way to free gas from

stars to p ower an active galactic nucleus (Hills 1975). One �nds that starting

around � = 5 that general relativistic e�ects b egin to b ecome imp ortant. As our

co de currently uses the Newtonian approximation to treat gravity, the following

discussion will b e for � � 5.

The problem was examined by Carter & Luminet (1983) using an a�ne star

mo del, which assumes that surfaces of constant density maintain an ellipsoidal

shap e. Their primary result was to bring attention to the fact that during extreme

encounters ( � greater than a few), there is a short p erio d over which the central

density of the star increases by a factor of order �

3

. The atmosphere of the star

ab ove and b elow the orbital plane is set into free fall motion by the gravitational

�eld of the black hole. The star 
attens into a thin pancake{like shap e b efore the

falling material is halted by the buildup of pressure. It is at this p oint that the

central density reaches its maximum value. Afterwards, the atmosphere b ounces,

and the central density monotonically drops.
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Smo othed particle hydro dynamic calculations by Bicknell & Gingold (1983)

con�rmed the �ndings of Carter & Luminet qualitatively, but also found that

the central density increased by a factor of only �

3 = 2

, signi�cantly lower than

that predicted by Carter & Luminet. The reason for the smaller density buildup

was due to the inclusion of arti�cial viscosity in the SPH calculation, which was

not present in the a�ne mo dels of Carter & Luminet. Sho ck heating halted the

collapse of the star at a lower central density than predicted by Carter & Luminet

(1983). Carter & Luminet (1986) presented new a�ne star mo dels in which they

included viscous e�ects and found that they could repro duce Bicknell & Gingold's

results. They argue, however, that their results do not mean that the a�ne mo del

and SPH results are correct, but rather that the agreement is due to the lack of

adequate spatial resolution in the SPH runs. The Bicknell & Gingold runs did only

use 500 particles. However, there is cause to b elieve that there is more wrong with

the Bicknell & Gingold calculation than a lack of particles. A more recent SPH

calculation (Laguna et al. 1993) with 7000 particles yielded a similar conclusion

that for a � = 5 encounter, the central density increases by a factor of slightly over

10. So it app ears that adding particles do es not signi�cantly change the density

enhancement predicted by co des using spherical kernels.

Our e�orts to duplicate the results given in the previous paragraph with a

spherical kernel co de met in utter failure for several reasons. Most SPH co des

use a form of the Lax{Wendro� viscosity term as given in equation (2.29). The

co e�cients �

1

and �

2

govern the b ehavior of this equation. If one uses values for

�

1

and �

2

which give go o d results in a sho ck tub e problem, one �nds that for a

� = 5 encounter, the central density only increases by a factor of approximately

3, not 10. In fact, we were only able to achieve a large increase in central density

by e�ectively turning o� sho ck heating. As a consequence, however, the ma jority
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of the particles involved in the simulation streamed through z = 0, making the

results useless. The only way to prevent the mass streaming of particles is to use an

anti{p enetration term in the equation of motion, as suggested by Monaghan (1989).

A side e�ect of using this term, however, is that in the presence of an external

p otential, the conservation of energy is compromised. A second, more signi�cant

problem is that these calculations used spherical kernels, which, as shown in the

previous section, are unable to follow the one{dimensional collapse of a system

b eyond a compression factor of 8. As the star collapses, the spatial resolution given

by the use of spherical kernels ero des to the p oint that one is unable to resolve the

pressure gradient which causes the star to b ounce. These strong encounters just

cannot b e mo deled using spherical kernels if the central density increase is as high

as previous authors have suggested.

Our new calculations of a � = 5 encounter have b een designed to address the

problems mentioned in the previous paragraph. As demonstrated in the previous

section, the use of spheroidal kernels preserves spatial resolution in the direction

of collapse while maintaining contact b etween particles in the plane p erp endicular

to collapse. In addition, we have implemented a viscosity term which is sensitive

to homologous collapse. It can b e shown analytically (Bicknell & Gingold 1983)

that the velo city pro�le of the free falling material is homologous up until the time

when this material b ounces. As mentioned in the previous section, the standard

viscosity term used in SPH calculations will pro duce sho ck heating in a homologous

collapse, contrary to what should happ en. This is why it was necessary in previous

SPH simulations to use unrealistically small values for the viscous parameters in

order to achieve a increase in central density of order 10 for a � = 5 encounter.

We have calculated the � = 5 encounter of an n = 3 = 2 p olytrop e of mass
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Fig. 2.5.| Central density as a function of time for a � = 5 encounter of an n = 3 = 2

p olytrop e. The density is scaled by the initial central density. The time of closest

approach is indicated by the arrow.

1 M

�

and radius 1 R

�

with a black hole of mass 10

6

M

�

. The calculation assumed

an ratio of sp eci�c heats of 5 = 3 and used 5093 particles. The co e�cients in the

Lax{Wendro� viscosity term were chosen to b e �

1

= 1 and �

2

= 2. The x { y plane

was chosen as the orbital plane, which means the star will collapse parallel to the

z {axis. The units used in the co de are G = R

�

= M

�

= 1. In Figure 2.5, the

quantity �=�

0

is shown as a function of time, where �

0

and � are the initial and

current central densities, resp ectively. The maximum central density is 8 times

the initial central density, smaller than that rep orted in other works. The velo city

pro�le along the z {axis at the time of closest approach is shown in Figure 2.6.

As mentioned earlier, the velo city pro�le is essentially homologous. The mo di�ed
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Fig. 2.6.| Z velo city pro�le vs. z along the z {axis at the time of closest approach

for the � = 5 calculation. The bar indicates a length of 2 h

z z

.

viscosity term used for this calculation takes into account the homologous 
ow,

drastically reducing the erroneous heating of the gas by arti�cial viscosity. An

indication of the enhanced spatial resolution provided by spheroidal kernels is that

only 3% of the particles streamed through the orbital plane. The ma jority of the

streaming particles were around the p eriphery of the star in the z = 0 plane. These

particles have less than the average numb er of neighb ors and therefore p enetrate

more easily. In addition, the average density for these particles is low, so that

the streaming particles account for only 0.5% of the total mass of the star. In

comparison, a similar run using spherical kernels (and no Monaghan stopping term)

resulted in the ma jority of the particles streaming. The reason for the reduced

numb er of streamers is that the spheroidal kernels allow our co de to represent a



40

steep er pressure gradient than p ossible by a spherical kernel co de. This means our

co de can make the collapsing material b ounce without having to add the Monaghan

stopping term required by a spherical kernel co de.

The particle con�guration at the time of maximum central density is shown in

Figures 2.7 and 2.8. These are the x { y and x { z pro jections of the particle p ositions,

resp ectively. Note the cross present in each �gure which indicates a length equal to

twice the typical smo othing length in each direction. The height of the star is now

approximately 0 : 05 R

�

, 20 times smaller than its initial height, while the star has

extended to a length along the x {axis of 4 times its initial length. The spheroidal

kernels have deformed in order to keep the relative spatial resolution along each

axis roughly constant. An astute reader will notice that the star is also mo destly

elongated in the x { y plane. This is the plane in which the kernels must retain a

circular shap e, causing the smo othing length in the y {direction to approach a go o d

fraction of the thickness of the star in that direction. Fortunately, the pressure

forces in the x { y plane are small compared to the gravitational tidal forces due to

the black hole. Therefore, spatial resolution in the x { y plane is not as critical as it

is in the x { z plane, where one must resolve the pressure gradient which forces the

star to b ounce. An indication that the current co de is able to resolve this pressure

gradient is shown in Figure 2.9, which plots the density pro�le along the z {axis

at the time of maximum central density. The relative spatial density, de�ned by

the ratio z

max

=h

z z

, should remain constant in a homologous 
ow. At the time of

maximum central density z

max

=h

z z

' 10, comparing nicely to the initial value 8.9.

It is instructive to calculate the numb er of particles required by a co de using

spherical kernels in order to achieve a relative spatial resolution of 10 at the time

of maximum compression. The smo othing length ob eys equation (2.8), which can
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Fig. 2.7.| Pro jection of particle p ositions onto the x { y plane at the time of

maximum central density for the � = 5 calculation. The cross has a length of

2 h
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in x and 2 h
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in y .
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Fig. 2.8.| Pro jection of particle p ositions onto the x { z plane at the time of

maximum central density for the � = 5 calculation. The cross has a length of

2 h

xx

in x and 2 h

z z

in z .
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Fig. 2.9.| Density pro�le vs. z along the z {axis at the time of maximum density

for the � = 5 calculation. The bar indicates a length of 2 h

z z

.

b e solved for h

0

, the initial smo othing length

h

0

= h

�

z

0

z

max

�

1 = 3

; (2.35)

where h is the smo othing length at the time of maximum compression, z

max

is the

height of the star at maximum compression, and z

0

is the initial height of the star.

The values of h , z

max

, and z

0

are approximately 0.0055, 0.055, and 1, resp ectively.

Solving for h

0

gives h

0

= 0 : 014. The initial smo othing length for particles in a

packed lattice �lling a sphere of unit radius is given by

h

0

' N

� 1 = 3

; (2.36)

where N is the numb er of particles. So a spherical kernel co de would require

N ' 3 : 5 � 10

5

particles to achieve the same relative spatial resolution at the time

of maximum density as the spheroidal kernel co de. But even with this numb er of
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particles, the spherical kernel co de will have another problem. The compression

factor at maximum density is of order 20. As shown in the intro duction to

this chapter, a co de using spherical kernels (indep endent of the total numb er of

particles) will pro duce no pressure in the directions p erp endicular to compression if

the compression ratio is larger than 8. This means there is no way to mo del strong

encounters b etween a star and a black hole using spherical kernels. One must use

kernels which can deform nonspherically.

2.3 Conclusions

We have shown that systems with deformation in predominately one direction

can cause ma jor problems for an SPH co de using spherical kernels. A metho d of

SPH using spheroidal kernels was intro duced which overcomes these problems by

allowing the kernel to deform b oth along the direction of deformation as well as

p erp endicular to it. Initial results on the tidal disruption of a star by a massive

black hole indicate that previous studies are qualitatively correct, but most likely

for the wrong reasons. It is clear that for extreme encounters, in particular

where general relativistic e�ects b ecome imp ortant, that spherical kernels are not

adequate. The nature of the problem is such that increasing the numb er of particles

used by a spherical kernel co de do es not help. Instead, it is necessary to mo dify

the smo othing kernel, as it contains a set of constraints on the deformations to an

initially spherical system which can b e accurately mo deled. Spherical kernels imply

a system that maintains spherical symmetry; likewise, spheroidal kernels imply a


attened system with axial symmetry. The ultimate realization of this concept will

b e ellipsoidal kernels, which, when implemented, should allow a co de to pro duce

accurate results indep endent of the �nal geometry of the system.



44

Chapter 3

SMOOTHED PARTICLE

HYDRODYNAMICS

SIMULATIONS OF THE

DISRUPTION PROCESS

Hills (1975) �rst suggested that tidal disruption of stars by massive black holes in

the center of galaxies could serve as a fuel source to p ower Active Galactic Nuclei

(AGN). This suggestion has b een examined several times since then. The stellar

dynamics problem of how often stars will come close enough to a black hole to b e

disrupted has b een discussed by Lightman & Shapiro (1977) and Cohn & Kulsrud

(1978). At the time of these calculations, however, it was not computationally

feasible to actually compute the hydro dynamic details of the disruption pro cess.

In order to estimate the mass accretion rate onto the black hole, these calculations

assumed that there was a threshold impact parameter inside of which the star was
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tidally disrupted. Once disrupted, its entire mass would b e accreted by the black

hole. Clearly, this is an oversimpli�cation. Stars will encounter the black hole

with a wide range of impact parameters, and the amount of mass lost by the star

and the subsequent fraction accreted by the black hole may span an equally large

range. Furthermore, since large impact parameters are statistically more probable,

weaker encounters during which only a small amount of mass is lost could account

for a signi�cant fraction of all mass tidally stripp ed from stars. It is the goal of this

pap er to provide a more reliable estimate of the amount of mass lost by a star and

accreted by the black hole.

The tidal radius r

t

is the radius at which the tidal �eld of the black hole

b ecomes comparable to the star's own gravitational p otential. It can b e de�ned by

the relationship

r

t

=

(

M

bh

M

?

)

1 = 3

R

?

: (3.1)

Thus, the strength of a given encounter can b e parameterized by � = r

t

=r

p

, where

r

p

is the closest approach of the star to the black hole. A larger value of � indicates

a stronger encounter. We note that the strength of an encounter has also b een

de�ned (Press & Teukolsky 1977) by

� =

(

M

?

M

bh

)

1 = 2

(

r

p

R

?

)

3 = 2

: (3.2)

In this chapter, we shall use � to characterize a given encounter unless otherwise

noted. To convert, one would use the relationship � = �

� 3 = 2

.

The problem of determining the fate of a star entering the tidal radius is

a complicated problem that requires either a relatively sophisticated analytical

mo del or three{dimensional numerical calculations. While distant encounters are

relatively easy to mo del, close encounters present a numb er of challenges essentially
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asso ciated with the large change of scales taking place. The star is compressed

signi�cantly in the direction p erp endicular to the orbital plane while it is b eing

stretched enormously in the orbital plane. Furthermore, for encounters approaching

the Schwarzschild radius, relativistic e�ects b ecome imp ortant. As the mass of the

black hole M

bh

increases, the Schwarzschild radius grows as M

bh

; however, the tidal

radius r

t

only grows as M

1 = 3

bh

. Therefore, these relativistic e�ects b ecome imp ortant

for milder and milder encounters with increasing black hole mass.

The analytical mo del by Carter & Luminet (1983) was the �rst examination

of the b ehavior of a star during strong encounters with a black hole. The main

assumption of their a�ne mo del was that contours of equal density remained

concentric ellipsoids. In addition, the stellar material was treated as an ideal gas

that only underwent adiabatic transformations. General relativistic e�ects were

also included in a later pap er (Luminet & Marck 1985). It was found that for

encounters stronger than � � 5, there is a p erio d during which the center density

of the star grows by a factor of �

3

, and the central temp erature grows by a factor

of �

2

. They coined the phrase \pancake phase" to describ e this p erio d, due to the

app earance of the star. Given the large increase in the central temp erature and

density, it was suggested that the resulting enhanced nuclear burning rates could

blow the star apart. However, b ecause in these same extreme encounters the star

departs from a mass distribution consistent with the main assumption of the a�ne

metho d, the �ndings of Carter & Luminet remain on uncertain ground. Only

three{dimensional hydro dynamic calculations seem able to answer the questions

surrounding a strongly disruptive encounter of a star with a black hole.

Numerical calculations of mild encounters ( � < 1) have b een carried out

recently by Khokhlov et al. (1993). Using a three{dimensional �nite{di�erence
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co de, they simulated encounters in which stars were mo deled as p olytrop es of index

n = 3 = 2 and n = 3. However, b ecause of the �nite extent of the computational

volume imp osed by the grid, they were unable to follow the material stripp ed from

the star during stronger encounters ( � > 1).

Three{dimensional numerical simulations of deep er encounters ( � � 1) have

b een b een p erformed using exclusively the Smo othed Particle Hydro dynamics

(SPH) metho d (Bicknell & Gingold 1983; Evans & Ko chanek 1989; Laguna et al.

1993). These simulations have explored the regime in which the star, mo deled as

p olytrop e of index n = 3 = 2, is completely disrupted ( � � 1). Carter & Luminet,

as mentioned ab ove, have shown that during the early phases of encounters with

� > 1 that there is a p erio d during which the central density of the star increases

dramatically. While Carter & Luminet found that this density increase scales as �

3

,

the numerical simulations of b oth Bicknell & Gingold and Laguna et al. obtain an

increase scaling as �

3 = 2

. While the imp ortance of this e�ect on the overall problem

of the feeding of the black hole is probably negligible, it has b ecome a p oint of

contention b etween numerical mo dels and analytical solutions.

As demonstrated in Chapter 2, the SPH metho d su�ers from the fact that

the kernel used to compute the spatial derivatives has a spherical geometry whose

extension, given by the smo othing length h , scales with the cub e ro ot of density.

Thus, the scaling is p erfect for a spherical collapse or expansion, but not when

the compression (or expansion) is unidirectional. In this case, the scaling of the

kernel results in a smo othing length to o large along the direction of compression

and to o small in the other directions. As shown in Chapter 2, this pro duces serious

problems in unidirectional compressions resulting in a density increase b eyond a

factor of 8. When translated to tidal encounters, this implies that the standard
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SPH technique is unable to follow realistically encounters deep er than � ' 5.

While the general case in which kernels are triaxial ellipsoids leads to severe

angular momentum conservation problems, this is not the case for the more

restrictive case in which spheroids are used, as shown in Chapter 2. The use of

such kernels which scale di�erently in the direction p erp endicular to the orbital

plane than in the plane allows the simulation of very deep encounters ( � � 5). In

addition, it is now p ossible to follow the evolution through the pancake phase with

adequate spatial resolution to mo del the b ounce of the atmosphere of the star and

the subsequent re{expansion (see Section 3.3). We note that the work of Bicknell

& Gingold already made use of nonspherical kernels but in a more rudimentary

fashion.

3.1 Numerical Metho d

In these simulations, we have employed an SPH co de that uses spheroidal

kernels, in contrast to prior simulations which have almost exclusively used

spherical kernels (with the exception of Bicknell & Gingold). The innovations

present in our SPH co de and the resulting improvements over a spherical kernel

co de were discussed in Chapter 2. In an SPH co de, the smo othing kernel W

provides the means to interp olate physical quantities such as density using an

expression like

� ( ~r ) =

X

j

m

j

W ( ~r � ~r

j

; h

j

) : (3.3)

Here, m

j

and h

j

are the mass and smo othing length of particle j , resp ectively.

The smo othing function W (� ~r ; h

j

) in a co de using spherical kernels b ecomes

W (� r; h

j

), and the ab ove sum is p erformed over all particles for which W (� r; h

j

)
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is nonzero. Typically, a kernel W is chosen so that it b ecomes zero at the distance

of a few h .

As mentioned ab ove, during the pancake phase of the star's disruption, a

co de using spherical kernels proves to b e inadequate. The only way to correct this

problem is to change the smo othing kernel W so that it is no longer spherically

symmetric, allowing it to follow the 
ow. We have chosen to use a kernel with

two degrees of freedom, with contours of equal W having the shap e of concentric

spheroids. Instead of sp ecifying a smo othing length h for each particle, one must

sp ecify the smo othing tensor H ,

H =

0

B

B

B

@

h

R

0 0

0 h

R

0

0 0 h

z z

1

C

C

C

A

: (3.4)

An illustration of the kernel corresp onding to the smo othing tensor H is given in

Figure 3.1. In the simple case of a spherical kernel, h

R

= h

z z

. The primary feature

of spheroidal kernels is that the kernel can change its size along the direction of h

z z

indep endently of its size in the plane orthogonal to h

z z

. During the pancake phase

the kernels of the particles can also 
atten into pancake{like shap es, providing the

required spatial resolution.

A few mo di�cations to the metho d presented in Chapter 2 should b e noted.

As previously mentioned in Chapter 2, it b ecame clear that when using spheroidal

kernels, it is necessary to limit how small h

z z

can b ecome. If this is not done, then

h

z z

can take on a very small value, leading to excessively short time steps. In some

cases, h

z z

takes on small values b ecause the problem demands it (such as in the

case of a � � 5 encounter b etween a star and a massive black hole), and therefore

limiting how small h

z z

can b ecome basically trades spatial resolution for faster

computation time. In our calculations we have set the lower limit for h

z z

so that
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Fig. 3.1.| A graphical interpretation of the spheroidal smo othing tensor H .

we favor resolution over sp eed, since we are interested in resolving the density spike

at the center of the star during the pancake phase.

In other cases, h

z z

app ears to take on unreasonable values due to the fact that

the particles near the p eriphery of the star have considerably fewer neighb ors than a

typical particle. This e�ect is a consequence of the fact that the velo city derivatives

entering the calculation of the smo othing tensor (see Chapter 2), essentially the

strain{rate tensor, are calculated less accurately near edges. Also, we note that our

prescription for up dating the tensor comp onents based on the strain{rate tensor is

ill{adapted to pure shear 
ows. Recent exp eriments in which we use the derivatives

of the lo cal moment of inertia instead of the strain{rate tensor show that these

problems can b e avoided. We plan to use this improved technique in the future. In

any case, erroneous values of the comp onents of the smo othing tensor lead to less

accurate estimates of quantities such as density and the velo city gradient. If h

z z

is allowed to evolve unrestrained using these more noisy estimates, it can take on
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unreasonably small (or large) values. Therefore, it is necessary to restrict h

z z

to

avoid this undesired b ehavior.

In addition to limiting how small h

z z

can b ecome, the co de also now checks to

see how many neighb ors a particle has b efore allowing the volume of the kernel to

increase. Otherwise, we found that some particles would have kernels which would

grow to unreasonably large values. It should b e noted that the particles a�ected

by these restraints on the kernel are primarily particles that have escap ed the

star. The internal energy of these particles is decreasing rapidly due to adiabatic

expansion; thus, the tra jectory of these particles is essentially ballistic and is only

slightly a�ected by these kernel problems.

Our calculations use a constant gravitational smo othing length � for

gravitational interactions b etween gas particles, as is commonly done in N{b o dy

simulations. The gravitational force b etween a gas particle and the black hole

(represented by a p oint mass) is not smo othed, since the gas particles never come

close enough to the black hole during the calculation for this to b ecome imp ortant.

We also employ the mo di�ed viscosity term given by equation (2.29). This mo di�ed

term attempts to take into account the fact that the collapse of the star in the

direction p erp endicular to the orbital plane is roughly homologous, and, as a result,

there should b e no sho ck heating. Unfortunately, owing to the functional form

of the arti�cial viscosity used in the standard SPH metho d, entropy is increasing

unreasonably, leading the star to b ounce prematurely. As will b e discussed in

Section 3.3.2, our mo di�ed viscosity term signi�cantly reduces the amount of

heating from sho cks up to the pancake phase. The improved spatial resolution due

to our use of spheroidal kernels, as well as the improved treatment of sho ck heating

through the use of the mo di�ed viscosity term, are b oth imp ortant advances in the
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mo deling of the tidal disruption of stars.

3.2 General Notes Concerning the Simulations

In this work, we will b e approximating the internal structure of real stars by

using p olytrop es of the appropriate index. Since we are interested in the tidal

disruption of stars in galactic nuclei, we must �rst decide which kinds of stars

will b e predominately disrupted. In the solar neighb orho o d, it is found that the

ma jority of the mass in stars is in the form of M and K dwarfs (Rana 1987). The

internal structure of these stars can b e represented by a p olytrop e of index n = 3 = 2.

We will assume that the Present Day Mass Function (PDMF) in galactic nuclei

is similar to that found in the solar neighb orho o d. Therefore, the simulations of

encounters of an n = 3 = 2 p olytrop e with a black hole will b e the most imp ortant.

However, in order to give the problem a more general treatment, we will also

p erform several simulations using an n = 3 p olytrop e, which adequately represents

stars of nearly solar mass and greater.

Although the numb er density of giants is exp ected to b e signi�cantly smaller

than that of M and K dwarfs, according to equation (3.1), the tidal radius for a

giant is p otentially an order of magnitude greater than that of an M dwarf. This

means that the disruption of a giant can o ccur within a greater volume than the

case for an M dwarf, so that the mass stripp ed from giants might b e comparable

to that from low mass stars. However, when this problem was considered by Lacy

et al. (1983), in the context of the center of the Milky Way, they found that the

disruption of giants is not a ma jor source of material. In pro ducing this result,

they estimated that the numb er density of red giants N

RG

is � 10

� 3

N

M S

, where

N

M S

is the numb er density of main{sequence stars. In addition, they assumed that



53

the typical radius of a red giant is 20 R

M S

. This leads to a disruption rate for red

giants which is only a few p ercent of that for main{sequence stars. The disruption

of giants is imp ortant for black holes with a mass greater than 10

8

M

�

, as the tidal

radius for main{sequence stars for such large black holes is actually smaller than

the size of the event horizon. This means that main{sequence stars will simply b e

swallowed without b eing disrupted. Giant stars, however, will still b e disrupted

and can provide fuel for the central AGN. For the purp oses of the present work,

however, it will b e su�cient to consider the disruption of main{sequence stars,

represented in our simulations by p olytrop es.

The units employed for our calculations set 1 R

�

= 1 M

�

= G = 1, resulting

in the co de units given in Table 3.1. In all cases, the star has a mass of 1 M

�

and a radius of 1 R

�

. The orbit of the star is initially parab olic in all cases. The

orbital plane is the x { y plane, so the star is compressed in the z {direction during

the pancake phase. Therefore, we have aligned the h

z

axis of the spheroidal kernel

along the z {axis. The simulations with n = 3 = 2 use 5093 particles, while the n = 3

simulations use 2351 particles. The particles are initially placed on a hexagonal

lattice, and the spacing of the particles in b oth cases is identical. The reason that

the two cases have di�erent numb ers of particles is b ecause in the n = 3 case, the

particles do not extend as far out spatially as in the n = 3 = 2 case. This is a result

of the more centrally concentrated nature of the n = 3 p olytrop e. To have used

5093 particles in the n = 3 case would have resulted in the ine�cient situation of

over half of the particles representing less than 0.4% of the mass of the star. In all

cases the kernel of each particle is initially spherical with a radius of 0.1, leading

to a typical particle having 40{45 neighb ors. We restrict h

z z

to b ecome no smaller

than 0.001, unless otherwise noted. The volume of a particle's kernel is not allowed

to increase if the particle has more than 100 neighb ors. The constant gravitational
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Table 3.1: Units used in these calculations.

Quantity Co de Unit

Distance 6 : 960 � 10

10

cm

Mass 2 : 000 � 10

33

g

Time 1 : 590 � 10

3

s

Velo city 4 : 378 � 10

7

cm/s

Density 5 : 932 g/cm

3

Energy 3 : 833 � 10

48

ergs

smo othing length � is set to a value of 0.05, one{half of the starting value of h

z z

.

The only time the separation b etween particles b ecomes small compared to � is

during the pancake phase. However, at this p oint, the internal energy of the gas is

considerably larger than the self{gravitational p otential of the star, so excessively

smo othing the gravitational interaction of the particles should not have a signi�cant

e�ect. Finally, the viscosity co e�cients used in the mo di�ed viscosity term given

by equation (2.29) are �

1

= 1 and �

2

= 2, which are typical values used in SPH

simulations.

We use a third{order Runge{Kutta integrator with adaptive time steps

(Fehlb erg 1969) to solve the equations of motion and energy (we use internal

energy to close our set of equations). We found a high{order integrator necessary

b ecause we p erform the computation in the frame of the center of mass of the

system. Using a second{order metho d resulted in considerably smaller time steps,

and the extra derivative evaluation of the third{order metho d was comp ensated

for by a larger time step. We also use double{precision variables to represent the

p osition, velo city, and force on a given particle. This was necessary b ecause the

internal hydro dynamic forces of the star can b e several orders of magnitude smaller

than the gravitational force due to the black hole. Since the tidal force is due to
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the di�erences in these large values, it was necessary to b e able to represent a large

dynamic range accurately in order to follow the hydro dynamics prop erly.

The energy conservation in these calculations varied dep ending on the strength

of the encounter and the mass of the black hole. But it was typically go o d to 5%

of the binding energy of the star for M

bh

= 10

6

M

�

, with a few cases of the error

b eing greater. For M

bh

= 10

4

M

�

, we found the error was a factor of 5{10 less than

for M

bh

= 10

6

M

�

. After considerable investigation into the nature of this energy

error, we b elieve that errors due to the handling of the hydro dynamics are minor.

The primary source of error is in the integration of the orbit of the star ab out the

black hole. A small error in the lo cation of the center of mass of the star can lead

to a considerable error in the total energy, due to the steep gravitational p otential

well of the black hole. The energy error was greater in the M

bh

= 10

6

M

�

case

b ecause the p otential well was deep er.

Our primary motivation for p erforming these calculations was to determine

how much mass is lost from the star for an encounter with a given � and p olytropic

index n. In order to determine the fate of the material stripp ed from the star,

we employed the following algorithm, which was inspired by a similar metho d

describ ed by Lai et al. (1993). One �rst assumes that a gas particle can b elong

to one of three comp onents: the star, the black hole, or free material unb ound

from b oth the star and the black hole. Initially, one assumes that all of the gas

particles are part of the star comp onent. One then computes a sp eci�c energy for

each particle relative to the black hole and relative to the star. The form of the

sp eci�c energy for particle i relative to comp onent k (where k can b e either the

star comp onent or the black hole comp onent) is

�

i;k

= u

i

+

1

2

v

2

r el;k

� 


i;k

; (3.5)
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where

~v

r el;k

= ~v

i

�

~

V

k

: (3.6)

Here, u

i

and ~v

i

are the internal energy and velo city of particle i . The velo city

~

V

k

is

the center of mass velo city of comp onent k , and 


i;k

is the gravitational p otential

of particle i relative to comp onent k . This means the p otential relative to all other

particles in the star comp onent must b e calculated to determine 


i;?

. But, for the

black hole comp onent, only the p otential of the particle relative to the black hole

is determined; the other gas particles in the black hole comp onent are ignored.

Likewise, the center of mass velo city of the black hole comp onent ignores the gas

particles in the black hole comp onent, using only the center of mass velo city of the

black hole instead.

Once �

i;k

is computed for each particle relative to the star and black hole

comp onents, one then reassigns each particle to the appropriate comp onent. If the

particle has a negative sp eci�c energy relative to the star comp onent, the particle

is given to the star comp onent. If the particle is unb ound from the star, but b ound

to the black hole, it b ecomes part of the black hole comp onent. Lastly, if it is

unb ound from b oth the star and the black hole, the particle is then considered part

of the unb ound comp onent. When all particles have b een reassigned, the whole

pro cess is iterated again. This includes recalculating

~

V

?

and 


i;?

for each iteration.

When each particle remains in the same comp onent for two consecutive iterations,

the pro cedure has converged for that particular time in the simulation. At the start

of the simulation ( t = 0), all of the material is in the star comp onent. After closest

approach, material is stripp ed from the star so that the amount of material in the

unb ound and black hole comp onents increases, whereas the amount in the star

comp onent decreases. We stop the simulation when the mass in each comp onent
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has settled down to a constant value. For weaker encounters ( � < 1), the star has

moved to a distance of � 20 r

t

at this time, while for strong encounters with � ' 3

or greater the convergence is much more rapid.

3.3 Results for n = 3 = 2

These mo dels are intended to simulate the mass stripping from a fully

convective star, corresp onding most closely to main{sequence stars with a mass

less than 1 M

�

. A p olytrop e of solar mass and radius was used for each of the

cases presented here. The ratio of sp eci�c heats was given a value of 
 = 5 = 3.

The ma jority of these runs were computed with M

bh

= 10

6

M

�

, which is within

an order of magnitude of the susp ected central black hole mass in many nearby

galaxies (see Kormendy 1993 for a recent review). The tidal work done on the star

for a given � should b e fairly indep endent of M

bh

for all M

bh

� M

?

. It was shown

by Press & Teukolsky (1977) that the energy pump ed into the star is dominated by

the quadrup ole tide (the l = 2 oscillation), and that the magnitude of this mo de is

dep endent only on � and indep endent of M

bh

for M

bh

� M

star

. As shown earlier,

� = �

� 3 = 2

, meaning the energy dep osited into the star is also only dep endent on � ,

indep endent of the mass of the black hole. In order to test this hyp othesis, we have

computed a selected set of the M

bh

= 10

6

M

�

cases with M

bh

= 10

4

M

�

.

We b egin the presentation of our n = 3 = 2 results with an examination of the

quantity of material stripp ed from the star as a function of � , as well as the fallback

time of the debris (Section 3.3.1). In Section 3.3.2, the pancake phase and the

increase in central density for a given � will b e discussed. Finally, in Section 3.3.3,

the energy pump ed into the star for nondisruptive encounters will b e examined and

compared to the �nite{di�erence calculations of Khokhlov et al. (1993).
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Table 3.2: Mass fractions for n = 3 = 2 and M

bh

= 10

6

M

�

as a function of � .

� M

star

M

bh

M

f r ee

0 : 4 1 : 000 0 : 000 0 : 000

0 : 5 1 : 000 0 : 000 0 : 000

0 : 6 0 : 964 0 : 018 0 : 017

0 : 7 0 : 781 0 : 111 0 : 108

0 : 8 0 : 503 0 : 255 0 : 242

1 : 0 0 : 094 0 : 453 0 : 453

1 : 5 0 : 076 0 : 459 0 : 465

2 : 0 0 : 000 0 : 500 0 : 500

3 : 0 0 : 000 0 : 500 0 : 500

5 : 0 0 : 000 0 : 500 0 : 500

3.3.1 Stripp ed Material

Using the iterative pro cedure outlined in Section 3.2, we have determined the

mass fraction of the star that ends up either b ound to the black hole ( M

bh

), b ound

to the star ( M

star

), or unb ound from b oth the star and the black hole ( M

f r ee

). The

mass fractions for the n = 3 = 2 runs are given for M

bh

= 10

6

M

�

in Table 3.2, and

for M

bh

= 10

4

M

�

in Table 3.3. Both tables are plotted together in Figure 3.2. As

exp ected, since M

bh

� M

?

in b oth cases, the two tables are in go o d agreement.

The amount of material stripp ed increases rapidly near � = 0 : 8, with only 4%

b eing stripp ed for � = 0 : 6, while over 90% is stripp ed for � = 1.

The transition from minimal mass loss to almost complete disruption is shown

in Figure 3.3, which displays the density in the orbital plane for several values

of � at the time when the star has moved a distance of 7 r

t

from the black hole.

The innermost contour is at 80% of the maximum density of the material, and the

subsequent contours are a factor of 10 smaller than the previous. There is clearly a
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Fig. 3.2.| The stripp ed mass fractions for an n = 3 = 2 p olytrop e. The �lled triangles

and the solid curve are the results for a black hole mass of 10

6

M

�

, and the op en

squares are the results for 10

4

M

�

.
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a b

c

Fig. 3.3.| Density of the star in the orbital plane for several n = 3 = 2, M

bh

= 10

6

M

�

encounters: (a) � = 0 : 6, (b) � = 0 : 8, and (c) � = 1. In each case the star has already

made its closest approach to the black hole and has now moved to a distance of 7 r

t

.

The innermost contour is at 80% of the maximum density, and each subsequent

contour is a factor of 10 smaller. The values of the innermost contour for these

frames are (a) 0.532, (b) 0.0448, and (c) 0.0130.
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Table 3.3: Mass fractions for n = 3 = 2 and M

bh

= 10

4

M

�

as a function of � .

� M

star

M

bh

M

f r ee

0 : 6 0 : 962 0 : 022 0 : 015

0 : 8 0 : 542 0 : 247 0 : 211

1 : 0 0 : 096 0 : 442 0 : 463

3 : 0 0 : 000 0 : 509 0 : 491

remnant of the original star present for the case of � = 0 : 6, with only a few p ercent

of the mass of the original star ripp ed away in the form of two tails. A considerably

weaker remnant is still present in the case of � = 0 : 8. Finally, for � = 1, the stellar

remnant is almost completely gone and the vast ma jority of the material extends

into two large tails. For a given � , the mass in each tail is roughly equal. One tail

contains the material unb ound from b oth the star and the black hole, while the

material in the other tail will fall back onto the black hole.

Although the mass stripp ed for a given � is fairly indep endent of the black hole

mass, the resulting sp eci�c energy and p erio d distributions of the material b ound

to the black hole di�ers considerably. A go o d estimate of the exp ected spread in

the sp eci�c energy of the gas after disruption is given by (Lacy et al. 1982)

� � '

G M

bh

R

?

R

2

p

; (3.7)

where R

p

is the closest approach of the star to the black hole. Like Evans &

Ko chanek (1989), we will use the sp eci�c energy distribution dM =d� (measured

in units of M

�

(� � )

� 1

), and the p erio d distribution dM =dP (measured in units

of M

�

yr

� 1

). These distributions are given for selected � in Figure 3.4 for

M

bh

= 10

6

M

�

and Figure 3.5 for M

bh

= 10

4

M

�

. The distributions for � = 1 and

M

bh

= 10

6

M

�

compare favorably to those given by Evans & Ko chanek (1989).
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Fig. 3.4.| Energy and p erio d distribution of stripp ed material for di�erent values

of � for a black hole mass of 10

6

M

�

and p olytropic index n = 3 = 2: (a) � = 0 : 8, (b)

� = 1, and (c) � = 3.
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Fig. 3.5.| Energy and p erio d distribution of stripp ed material for di�erent values

of � for a black hole mass of 10

4

M

�

and p olytropic index n = 3 = 2: (a) � = 0 : 8, (b)

� = 1, and (c) � = 3.
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The characteristic feature of the sp eci�c energy distribution is a broad, 
at

p eak with a width of order 2� � . Our simulations show that the width of the

p eak do es not app ear to dep end strongly up on � . We note that in the cases

where the star is not completely disrupted, there is also a sharp inner p eak that

corresp onds to the material in the stellar remnant. Assuming that the sp eci�c

energy distribution dM =d� is constant, one can derive a p erio d distribution of

(Rees 1988; Phinney 1989; Evans & Ko chanek 1989)

dM

dP

'

1

3

M

?

P

m

�

P

P

m

�

� 5 = 3

; (3.8)

where P

m

is the shortest p erio d of the gas b ound to the black hole.

Because the true dM = � � is not a 
at curve, the p ower law dep endence of

dM =dP will not start at the shortest p erio d of the b ound gas in our numerical

exp eriment. Instead, it will start at a p erio d which corresp onds to the sp eci�c

energy where dM = � � b ecomes 
at. Due to the steep sides of the sp eci�c energy

distribution curve, the p ower law dep endence of dM =dP starts at approximately

its p eak value. For the sake of comparison, a P

� 5 = 3

p ower law normalized to the

p eak of dM =dP has b een plotted in each of the p erio d distributions presented in

Figures 3.4 and 3.5. One �nds that for � > 1, there are discrepancies b etween the

numeric and analytic predictions. This is due to the fact that for larger � , the

sp eci�c energy distribution has b ecome quite rounded. Even so, the spread in the

sp eci�c energy of the gas do es not vary much for the range of 0 : 6 � � � 5. The

p erio d at which the p eak of dM =dP o ccurs is also fairly indep endent of � . This,

coupled with the fact that dM =dP is roughly a p ower law for all � , means one

can reasonably assume that for given M

bh

, the time scale for stripp ed material to

return to the vicinity of the black hole is indep endent of � over the range of our

calculations, 0 : 6 � � � 5.
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3.3.2 The Pancake Phase

A p oint that has lead to a numb er of controversies b etween numerical mo dels

and analytical calculations is the increase in central density and temp erature during

the pancake phase. Carter & Luminet (1983) �rst suggested that for extreme

encounters ( � > 5), the enhancement in density and temp erature is enough to cause

signi�cant energy release from nuclear burning. This additional energy could blow

the star apart with enough force that very little of the escaping material could b e

captured by the black hole. In regard to AGNs, this would mean that encounters

with a � greater than some threshold value would, contrary to intuition, yield

very little material to fuel the black hole. Subsequent numerical work by other

researchers using SPH simulations yielded the conclusion that Carter & Luminet

had overestimated the magnitude of the enhancement (Bicknell & Gingold 1983;

Laguna et al. 1993). Carter & Luminet determined that the central density of

the star would scale by a factor of �

3

during the pancake phase, whereas Bicknell

& Gingold and Laguna et al. rep orted a factor of order �

3 = 2

. Unfortunately, we

are not aware of any numerical simulations based on �nite{di�erence co des of

encounters with larger values of � . These would have help ed in determining the

true scaling law, as b oth the analytical and the SPH simulations su�er from a

numb er of limitations. The latter ones are reviewed brie
y b elow.

In Chapter 2, we have given a lengthy discussion of the p ossible reasons for the

discrepancy b etween the �ndings of Carter & Luminet and the SPH simulations. To

summarize, we b elieve the reasons to b e related to the use of spherically{symmetric

kernels and a form of arti�cial viscosity that generates entropy even in homologous

contraction. The latter p oint is interesting. We �rst note that the comp onent

p erp endicular to the orbital plane of the gravitational acceleration due to the
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black hole at any radius is prop ortional to the height ab ove the plane. Thus, the

compression of the star along this direction will b e nearly homologous as long as the

pressure gradients inside the star remain small compared to the gravitational pull

of the black hole. During homologous contraction, entropy should b e conserved.

Unfortunately, the standard form of the SPH arti�cial viscosity is a function of

velo city di�erences on a pairwise basis, which leads to energy dissipation even in

homologous collapse, increasing the entropy of the gas. The gas b eing on a higher

adiabat, pressure gradients are stronger at a given density, and the star b ounces at

lower density, explaining part of the di�erences found b etween the numerical SPH

simulations and the analytical results of Carter & Luminet.

Another problem with previous SPH simulations has b een the use of spherical

kernels. During the pancake phase of the star, the spatial resolution along the

direction of collapse can b ecome very p o or. We have avoided this problem by

pioneering the use of spheroidal kernels, which allow signi�cantly b etter spatial

resolution without requiring the use of more particles. In Chapter 2, we have given

a full development of our metho d of spheroidal kernels.

To emphasize the considerable improvement that spheroidal kernels provide

over spherical kernels, consider Figure 3.6. This �gure shows a time series of the

density in a plane p erp endicular to the orbital plane, aligned along the longest axis

of the distorted star, for the � = 5 encounter. The x {axis is along the longest

axis of the star, while the z {axis is p erp endicular to the orbital plane. Note that

the plotting scales used for each axis are not the same. At the time of maximum

central density, the star has collapsed by a factor of almost 20 in the z {direction.

It would b e very di�cult to mo del this collapse using spherical kernels, since if

one was to shrink the kernels su�ciently for adequate spatial resolution in the
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Fig. 3.6.| Time series showing the density in a plane aligned along the longest axis

of the star for an n = 3 = 2, M

bh

= 10

6

M

�

, � = 5 encounter. The collapse of the star

is parallel to the z {axis. The time for each frame, relative to the time of maximum

central density, are (a) -0.0438122, (b) 0.0246374, (c) -0.0129947, (d) -0.0053219,

(e) 0.0000700, (f ) 0.0073592, (g) 0.0219012, (h) 0.0324701, and (i) 0.0455705. The

innermost contour has a value of (a) 2.43, (b) 3.90, (c) 6.09, (d) 8.37, (e) 9.14, (f )

7.87, (g) 4.27, (h) 2.88, and (i) 1.97. All other contours are smaller than the previous

by a factor of 2.
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z {direction, particles would not overlap with other particles in the lateral directions

with similar values of z . This would mean that the neighb ors of a given particle

would only b e those directly ab ove and b elow it in the z {direction. With no more

sonic contact inside the orbital plane, the problem has b een reduced essentially to

the calculation of a numb er of p o orly{resolved, one{dimensional problems. With

spheroidal kernels, we are able to maintain contact b etween particles in the plane

parallel to the orbital plane until the star has extended itself and formed tails of

stripp ed material. At this p oint, hydro dynamic forces are negligible b ecause the

material has very low density and internal energy.

It is worth p ointing out that merely increasing the numb er of particles but

keeping the kernel spherical is not an alternative to the use of spheroidal kernels.

First, we note that matching the resolution p erp endicular to the orbital plane

during the pancake phase of a � = 5 encounter would require � 3 : 5 � 10

5

spherical

particles (Section 2.2.2). However, even if this numb er is used, the scaling of the

spherical kernel will still result in the breakdown of the hydro dynamics parallel

to the orbital plane, as particles would b e out of sonic contact. This illustrates

well the numerical di�culties of these typ es of simulations which, at �rst glance,

app eared to b e well tailored to the SPH technique.

The magnitude of density enhancement for several M

bh

= 10

6

M

�

mo dels are

given in Table 3.4, and shown in Figure 3.7. It should b e noted that since our

co de is based on purely Newtonian mechanics, encounters with � = 10 in which

the star comes within a couple of Schwarzschild radii of the black hole are not

meant to represent the dynamics accurately, but were run only for the purp ose

of determining the density scaling law. The next level of simulation would b e to

include relativistic e�ects in our co de.
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Table 3.4: Magnitude of density enhancement for n = 3 = 2 calculations.

� �

max

=�

0

1 : 0 1 : 001

1 : 5 1 : 000

2 : 0 1 : 182

3 : 0 2 : 343

5 : 0 7 : 789

10 : 0 46 : 892

Another concern in the simulation of very deep encounters, say � = 10, is

again a purely SPH problem. As with all particle metho ds used in 
uid dynamics,

it is essential to prevent particles from two colliding streams to p enetrate. Pressure

gradients and arti�cial viscosity should prevent such streaming. While this is

generally the case, we have observed these problems to increase signi�cantly

with increasing � . This can b e checked easily by computing how many particles

crossed from one side of the orbital plane to the other side during the encounter.

While there clearly should b e none, we found that in the case of the � = 10

simulation, 10% of the mass of the star streamed through the orbital plane. Since

these problems o ccur essentially in the outer regions of the star where the typical

particle has a smaller numb er of neighb ors, we don't b elieve the central density

enhancement is a�ected much by this. Fortunately, since the particles which

stream are concentrated near the surface of the star, by increasing the numb er of

particles used in the simulation, one should b e able to reduce the fraction of the

star which streams. We note that the SPH simulations of Laguna et al. up date the

p osition of particles using a correction term computed from the lo cal mean velo city

(Monaghan 1989). While this indeed stops p enetration and streaming, it has the

disadvantage of no longer conserving total energy when an external force (in our
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Fig. 3.7.| Central density enhancement as a function of � for n = 3 = 2.

case, the gravitational force of the black hole) is applied; thus, we discard such

technique here.

Even with these reservations ab out our mo deling of a � = 10 encounter, the

density enhancement values for � = 3 ; 5 ; and 10 fall nicely along a �

2 : 5

p ower law.

A more exact �t (shown in Figure 3.7 as a dotted line) gives

�

max

�

0

= 0 : 147 �

2 : 49

: (3.9)

Here, �

max

is the maximum density at the center of the star during the entire

simulation, and �

0

is the initial density at the center of the star. This result is

closer to the �

3

p ower law of Carter & Luminet than previous SPH investigations.

One reason for this b etter agreement is the fact that our mo di�ed viscosity term

led to very little viscous heating during the collapse of the star. Let us de�ne the

entropy S as

S = ( 
 � 1) ln

(

( 
 � 1) u

�

( 
 � 1)

)

: (3.10)
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Fig. 3.8.| Entropy shown as a function of height in the collapsing stellar atmosphere

in the � = 5 mo del with n = 3 = 2 and M

bh

= 10

6

M

�

mo dels. The curve is at the

time of maximum central density.

In Figure 3.8, the entropy of the star is given as a function of height at the time

of maximum central density for the � = 5 mo del. The values plotted are along

a line which passes through the center of mass of the star and is p erp endicular

to the orbital plane. The dashed line gives the initial (constant) value of entropy

throughout the star. The density along the same cut through the star is shown

in Figure 3.9. If the star collapses adiabatically, then the entropy should remain

constant. The departure of the entropy in the outermost gas from the original

value shows this is where sho ck heating has o ccurred. The innermost material is

halted by the increase in pressure due almost solely to the adiabatic compression

of the gas, just as in the mo dels of Carter & Luminet. The sho ck heating of the

outermost material could b e the reason we do not observe as much of a density

enhancement for a given � as Carter & Luminet.

One of the assumptions of the a�ne mo del used by Carter & Luminet is that
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Fig. 3.9.| Density shown as a function of height in the collapsing stellar atmosphere

in the � = 5 mo del with n = 3 = 2 and M

bh

= 10

6

M

�

mo dels. The curve is at the

time of maximum central density, and is scaled by the initial central density of the

star �

0

. The interval bars show a distance of h

z z

in each direction.

contours of equal density remain concentric ellipsoids. From Figure 3.6, one can

clearly see that this assumption is not true near the time of maximum central

density for our � = 5 encounter. For encounters with � > 5, the situation b ecomes

even worse. The b est way to visualize what these encounters would lo ok like is to

imagine pulling a sp onge through a very small ring. At the lo cation of the ring, the

sp onge undergo es maximal compression, and, as one moves away from the ring, the

compression decreases. Our departure from the result of Carter & Luminet may b e

in part due to the breakdown of the a�ne assumption for these extreme encounters.

Another p ossible reason for the di�erences is that in our initial conditions, the

gas particles only extend to approximately 86% of the radius of the star to which

the mo del is supp osed to corresp ond. In the initial mo del, we pack our particles on

a hexagonal lattice with a spacing roughly equal to the initial smo othing length
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Fig. 3.10.| Ram pressure as a function of height in the collapsing stellar atmosphere

for the same � = 5 mo del as Figure 3.8. The curve is taken just b efore the time of

maximum central density.

of the particles. For the numb er of particles used in these simulations (5093), the

outermost layer of the hexagon grid is of order 86% of the radius of the actual star.

If this gas had actually b een present in the simulation, a higher pressure would

have b een required at the center of the star to halt the collapse of the atmosphere.

To assess the imp ortance of the missing outer 14% in radius of the star, we plot in

Figure 3.10 the ram pressure �v

2

just prior to reaching maximum central density

in our � = 5 simulation. We see that the ram pressure reaches a maximum value

approximately midway to the surface of the star and falls o� rapidly towards the

surface. Thus, we b elieve extending the star to its true radius would lead to a

negligible increase in the central density enhancement.

In an attempt to understand the e�ect of numerics on our solution, a � = 5 run

with 14591 particles was also calculated. The particles now extend to 90% of the

desired radius of the star. The increase in the maximum central density, normalized
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Fig. 3.11.| Similar to Figure 3.8, except that this �gure is for a run with 14591

particles instead of 5093.

to the initial center density, was 8.00. This compares favorably to the value of 7.79

from the run with 5093 particles. In Figures 3.11 and 3.12, the run of entropy and

density versus z are shown for the calculation with 14591 particles, and should b e

compared to Figures 3.8 and 3.9, which are for the run with 5093 particles. The

principle di�erence is that the entropy jump near j z j = 0 : 04 is sharp er in the case

with 14591 particles, most likely due to the improvement in spatial resolution that

comes with more particles. Overall, this result shows that the density enhancement

for the case of � = 5 is not signi�cantly more than 8, and that our result is fairly

indep endent of the numb er of particles used in the calculation.

3.3.3 Tidal Energy Transfer

The emphasis of these calculations has b een to mo del the stripping of material

from the star. In the case where material is not stripp ed from the star, there is
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Fig. 3.12.| Similar to Figure 3.9, except that this �gure is for a run with 14591

particles instead of 5093.

the p ossibility that the star will b ecome tidally captured (Fabian et al. 1975). The

energy required to deform the star reduces the energy of its orbit around the black

hole. Since the star was initially in a parab olic orbit, after deformation it will b e

in an extremely eccentric elliptical orbit with roughly the same closest approach

to the black hole. The next encounter with the black hole will p ossibly further

deform the star, reducing the energy of its orbit more. Semi{analytic calculations

of the work done on the star have b een computed (Press & Teukolsky 1977; Lee

& Ostriker 1986). Additionally, three{dimensional hydro dynamic calculations for

various p olytropic stars using a grid{based co de are now available (Khokhlov et al.

1993). In Figure 3.13, we compare our values of T

2

( � ) to those given in Khokhlov

et al. and Lee & Ostriker. The quantity T

2

( � ) is de�ned (Press & Teukolsky 1977)

to b e

T

2

( � ) = �

4

� E ; (3.11)
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Fig. 3.13.| Energy transfer to the star for n = 3 = 2 mo dels. The op en triangles are

the results from this work, the op en squares are from Khokhlov et al. (1993), and

the solid curve is from Lee & Ostriker (1986).

where � E is the quantity of energy transferred to the star from its orbital energy

during the encounter. Our result for � = 3 : 95 falls near the result exp ected from

linear theory, and is where the results of Khokhlov et al. app ear to indicate the

departure from linear theory should start. Our value for � = 2 : 83 also app ears

to b e consistent with the results of Khokhlov et al . The p oints near � = 2 are

shown as lower limits, since, at the end of the simulation, the value of T

2

( � ) was

still increasing. In these cases, a small amount of material was stripp ed from the

star. That b oth SPH and the grid{based FCT (
ux corrected transp ort) metho d

employed by Khokhlov et al. agree so well is reassuring, since the two metho ds use

radically di�erent approaches to solve the equations of hydro dynamics.

The amount of energy pump ed into the star in these cases is of order 1% of

the binding energy of the star. We found that the error in total energy, however,

was ab out 3% of the binding energy of the star for these cases. The fact that our
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results agree so well with Khokhlov et al. is further evidence that the error in total

energy in our calculations is dominated by errors in the p osition of the center of

mass of the star, as describ ed earlier in this pap er. These errors do not app ear to

signi�cantly a�ect the mo deling of tidal forces acting on the star.

3.4 Results for n = 3

In order to examine how mass loss was a�ected by the internal structure

of the star, we also p erformed a numb er of simulations in which the star was

approximated by an n = 3 p olytrop e. Unlike the n = 3 = 2 mo del from the previous

section, the star in this case do es not have constant entropy throughout, since


 6= (1 + 1 =n ). While the initial structure of the star corresp onded to an n = 3

p olytrop e, the evolution was computed assuming a matter{dominated gas for

which we set 
 = 5 = 3. To allow direct comparison with the results of the n = 3 = 2

simulations, we kept the radius and the total mass �xed at solar values. Thus, as

shown in Figure 3.14, the central density of the n = 3 star is a factor of 8 greater

than the central density of the n = 3 = 2 star. The mass inside of a given radius r

is plotted in Figure 3.15. The steps in this �gure at small R are due to the fact

that there are no particles in the region 0 < R < 0 : 1, meaning the cumulative

mass stays constant over that range. The half{mass radius for the n = 3 = 2 star

is at approximately r = 0 : 5, while for the n = 3 star, the half{mass radius o ccurs

at r = 0 : 27. These characteristics make our n = 3 mo del more representative

of stars of solar mass or greater. But it should b e noted that our n = 3 mo del

will primarily b e used in this preliminary survey of the tidal disruption pro cess to

compare with the n = 3 = 2 mo del in order to prob e the dep endence of mass loss on

the density pro�le of the star. The next stage will b e to use realistic stellar mo dels
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n=3

n=3/2

Fig. 3.14.| Comparison of the density pro�les of the n = 3 = 2 (triangles) and n = 3

(squares) mo dels. Co de units are used for b oth axes of this �gure.

n=3/2

n=3

Fig. 3.15.| Comparison of the cumulative mass pro�les of the n = 3 = 2 (triangles)

and n = 3 (squares) mo dels. Co de units are used for b oth axes of this �gure.
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Table 3.5: Mass fractions for n = 3 and M

bh

= 10

6

M

�

as a function of � .

� M

star

M

bh

M

f r ee

0 : 60 1 : 000 0 : 000 0 : 000

0 : 75 0 : 998 0 : 001 0 : 001

0 : 90 0 : 983 0 : 009 0 : 008

1 : 00 0 : 955 0 : 023 0 : 022

1 : 25 0 : 807 0 : 097 0 : 096

1 : 50 0 : 595 0 : 205 0 : 200

2 : 00 0 : 216 0 : 379 0 : 405

3 : 00 0 : 000 0 : 499 0 : 501

5 : 00 0 : 000 0 : 499 0 : 501

for these calculations. Because of the overall similarity of the n = 3 and n = 3 = 2

results, we will concentrate on only the di�erences b etween the two cases. The star

undergo es a similar deformation in either case, and, for high enough values of � the

star will 
atten into a pancake{like shap e. The most signi�cant di�erence is that

the binding energy of the n = 3 p olytrop e is larger than the n = 3 = 2 p olytrop e, so

it requires a deep er plunge to completely disrupt the star in the n = 3 case. The

fractions of the star which go es into the three comp onents intro duced ab ove are

given in Table 3.5 for a black hole mass of M

bh

= 10

6

M

�

. The values for a black

hole mass of 10

4

M

�

are nearly identical, as in the case for n = 3 = 2, so they are

not given. In Figure 3.16, the mass fractions are plotted for b oth the n = 3 and

n = 3 = 2 cases. As anticipated, the star must come closer to the black hole in the

n = 3 case in order for it to b e completely disrupted. Another interesting di�erence

b etween the n = 3 = 2 and n = 3 runs is the width of the sp eci�c energy distribution

of the debris. For a given value of � , the n = 3 distribution is wider. The sp eci�c

energy distribution and p erio d distribution for � = 3, n = 3 is given in Figure
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Fig. 3.16.| The stripp ed mass fractions for b oth the n = 3 = 2 and n = 3 p olytrop es.

The black hole mass in b oth cases is 10

6

M

�

. The �lled triangles are the n = 3 = 2

results, while the �lled squares are the results for n = 3.
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Fig. 3.17.| Energy and p erio d distribution of stripp ed material for various � = 3

encounters with a black hole of 10

6

M

�

: a) n = 3 and 2351 particles, b) n = 3 and

4961 particles, and c) n = 3 = 2 and 5093 particles.
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3.17. There are actually two di�erent � = 3 runs shown, one computed with 2351

particles and the other with 4961 particles. Also plotted is the � = 3, n = 3 = 2 run

originally shown in Figure 3.4. Note that the two n = 3 runs agree well, with the

4961 particle run giving b etter statistics. In addition, the 4961 particle run gives a

b etter treatment of the outer layers of the star. This is evidenced by the extension

of the p erio d distribution derived from 4961 particle to longer p erio ds than seen

from the 2351 particle run. Another feature to note is that, in the case of n = 3,

the material returns to the vicinity of the black hole on a time scale that is ab out

half that of the n = 3 = 2 case. However, due to the current uncertainty of what

happ ens to the debris once it returns to the black hole (see Rees 1990 for some

p ossibilities), the di�erence in time scales for n = 3 = 2 and n = 3 may not b e that

signi�cant in terms of what a tidal disruption event would lo ok like to an observer.

Therefore, we b elieve that the most signi�cant di�erence b etween the two mo dels

lies in the fact that the n = 3 mo del would require a closer encounter than the

n = 3 = 2 mo del to lose the same amount of mass.

3.5 Conclusions

Our mo dels agree well with earlier numerical simulations, either SPH or

�nite{di�erence, for mild encounters with � � 1. For encounters with � � 5,

however, we di�er signi�cantly with previous SPH calculations that are the only

calculations currently available in this regime. We b elieve that these di�erences

stem from the use of spherical kernels, which do not provide adequate spatial

resolution during the strong pancake phases, and by an arti�cial viscosity term

which led to extraneous sho ck heating, causing the star to b ounce at to o low a

central density. We are able to circumvent these di�culties by using spheroidal
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kernels and a mo di�ed arti�cial viscosity.

While our results still do not recover the �=�

0

/ �

3

scaling of Carter &

Luminet, we obtain a much steep er dep endence of central density increase with

closest approach than all previous SPH simulations. We obtain a central density

scaling of �

2 : 5

, which is interestingly close to the analytic value. It is not clear

if the di�erences b etween the two values reside in further limitations of the

numerical metho ds (truncation of the p olytrop e, Newtonian mechanics even in deep

encounters, etc.) or to assumptions b ehind the analytic mo del (elliptical density

pro�les, no sho ck dissipation, etc.). However, even though there might b e still

some uncertainty with the outcome of very close encounters, they are infrequent,

and their overall imp ortance on the feeding of the black hole is corresp ondingly

reduced.

The main fo cus of this work has b een to derive the amount of mass lost from

a star for a given strength encounter with a black hole. We �nd, as exp ected,

that the amount of mass lost for a given strength encounter (measured by � ) is

indep endent of the mass of the black hole over a range of 10

4

to 10

6

M

�

. Also

as exp ected, the more centrally concentrated n = 3 p olytrop e requires a stronger

encounter to b e completely disrupted than the n = 3 = 2 p olytrop e. The mass lost

as a function of � , presented in Tables 3.2 and 3.5, will allow the improvement of

estimates of the rate at which an AGN can b e fed by the tidal disruption of stars.

This will b e the sub ject of the next chapter.
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Chapter 4

THE TIDAL DISRUPTION OF

STARS IN GALACTIC NUCLEI

There is kinematic evidence that an � 10

6

M

�

black hole exists at the center of

the Milky Way (Serabyn & Lacy 1985). Yet, our galactic center do es not exhibit

any signs of particular activity such as those normally exp ected from accreting

black holes of this size (high energy photons, short time scale luminosity variations,

etc). The usual explanation for this lack of activity is to assume the black hole to

b e starved of fuel. While it is conceptually p ossible to envision a central region

devoid of \free" gas, the tidal disruption of stars entering the black hole's Ro che

limit after having di�used onto nearly radial orbits is unavoidable and have b een

computed to o ccur once every 10

4

years in the case of a 10

6

M

�

black hole (Cohn

1978). Such encounters necessarily supply the black hole with a signi�cant quantity

of gas, which should give rise to detectable activity lasting as long as the accretion

pro cess. Our galactic center should therefore exp erience a p erio d of relatively

intense activity, followed by an extended p erio d of quiescence which might b e the
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dominant state if the accretion of the tidally{captured debris o ccurs on time scales

that are short compared to successive tidal disruptions.

This scenario is not restricted to the Milky Way alone, as the case can b e

made that most bright galaxies have a central black hole with a mass of 10

6

solar

masses or more (Boyle et al. 1987; Rees 1990). And yet, again these galaxies do

not exhibit any signs of particular activity, earning the lab el \dead quasars" from

Rees (1990). While these galaxies might b e starved of \free" gas, they cannot

avoid the tidal disruption of stars on nearly radial orbits. Thus, we conclude that

these galaxies must b e observed currently in the quiescent state b etween successive

disruption, their activity level increasing signi�cantly for a short p erio d of time

after each disruption. Since such events are exp ected to pro duce an X{ray 
are for

a time scale of a few months to a year (Rees 1988), their systematic detection in

the center of galaxies would provide strong evidence for the existence of massive

black holes in most galaxies. A numb er of observations claiming the detection of

such events have b een published, and we will review them in Section 4.4.

The study of the feeding of a massive black hole by the tidal disruption of

stars requires the understanding of several imp ortant physical pro cesses. These

include not only the physics of the disruption pro cess itself and the determination

of the amount of mass b ound to the black hole, but also the determination of the

frequency at which such encounters take place, as well as the details of the �nal

accretion by the black hole of the captured debris and the exp ected observational

consequences.

Since until recently numerical simulations of the actual tidal disruption of

stars venturing to o close to the black hole were not p ossible, previous investigations

(e.g., Duncan & Shapiro 1983; Murphy et al. 1991) relied on simple assumptions.
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In particular, it has b een assumed that a star is disrupted if it passes closer

than a distance r

t

from the black hole (which we will refer to as the hard{sphere

assumption). Once disrupted, the entire mass of the star is accreted by the black

hole. In this work, we will de�ne the radius r

t

as

r

t

=

�

M

bh

M

?

�

1 = 3

R

?

= 100 R

�

 

M

bh

10

6

M

�

!

1 = 3
�

M

�

M

?

�

1 = 3

 

R

?

R

�

!

; (4.1)

where M

bh

is the mass of the black hole, and M

?

and R

?

are the stellar mass and

radius of the star, resp ectively. Our de�nition of r

t

is comparable but not exactly

identical to the Ro che radius. Clearly, the disruption pro cess is more complicated

than assumed in the hard{sphere mo del. For very distant encounters, the star will

merely deform and not lose material. For somewhat closer encounters, the star will

b egin to lose the outer layers of its atmosphere, but the remainder of the star will

remain intact. The star will not exp erience signi�cant mass loss until the energy

pump ed into the star by tidal forces is comparable to the binding energy of the

star. In the limit of very strong encounters, the star will b e completely disrupted

and half of the debris will b e b ound to the black hole (Lacy et al. 1982). This limit

is a result of the pro cess by which the star is disrupted. In a strong encounter, the

star is �rst stretched out into a cigar{like shap e. The tidally{induced torque on

the star then causes the star to spin{up and disrupt. Two tails of roughly equal

mass are thrown out, one b ound to the black hole and the other unb ound. In

order to explore this sp ectrum of encounters, we seek to compute the amount of

mass stripp ed from a star as a function of its impact parameter b with the black

hole. For weak, distant encounters, one can use a linear treatment of the problem

to compute how much energy is pump ed into the star (Press & Teukolsky 1977).

The linear treatment, however, b ecomes invalid for the stronger encounters where
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mass is stripp ed from the star and numerical simulations b ecome necessary to

understand these cases.

Smo othed Particle Hydro dynamics (SPH) is a robust, e�cient computational

technique that allows three{dimensional problems to b e solved on mo dern{day

workstations. In Chapter 2, we describ ed the SPH metho d we have develop ed in

order to mo del the tidal disruption of stars. It di�ers from the traditional SPH

metho d by utilizing spheroidal instead of spherical kernels. In addition, our SPH

metho d employs a sp ecially{tailored arti�cial viscosity in order to mo del sho ck

heating during the disruption of the star more accurately than is p ossible using

the traditional SPH metho d. For simplicity, we have mo deled stars as p olytrop es,

although, in principle, it should b e p ossible to use realistic stellar mo dels. In

Chapter 3, we have presented a catalog of results for the disruption of solar mass

p olytrop es of indices n = 3 = 2 and n = 3 by a 10

6

solar mass black hole. Among

the results presented in Chapter 3 is the desired information ab out the mass lost

by the star as a function of its impact parameter b .

In this chapter, we shall estimate the feeding rate of a black hole by the tidal

disruption of stars by using b oth the hard{sphere assumption and the results

obtained from our simulations. We shall compare b oth estimates, which will

provide a sense of uncertainty still a�ecting these rates. However, in order to

b e able to determine these rates, we need to �rst de�ne a mo del for the stellar

system in which the black hole is emb edded. We shall use a King mo del, otherwise

known as a truncated isothermal sphere, to represent this stellar cluster. Once

the stellar cluster mo del is given, we will employ loss{cone theory (Frank & Rees

1976) to calculate feeding rates for two di�erent assumptions of tidal disruption.

After comparing these two estimates, we shall review the exp ected observables of
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a tidally{disrupted star. Finally, we will consider recent claims of observational

detections of tidally{disrupted stars in other galaxies.

4.1 Tidal Disruption of Stars in a Truncated Isothermal Sphere

4.1.1 The Stellar Cluster Mo del

The prevailing mo del for an Active Galactic Nucleus (AGN) places a massive

black hole at its center in the actual nucleus of a galaxy. The black hole has grown

to its current size by accreting material originating from several sources. A stellar

collision can lead to the ejection of a fair fraction of the total mass of the two

stars. Winds from evolved stars will b e another source of free gas. Finally, debris

stripp ed from tidally{disrupted stars will also b e available to feed the central black

hole. The stellar cluster surrounding the black hole is in turn a�ected by the loss of

stars to the black hole. In addition, the orbits of stars which pass in the vicinity of

the black hole are mo di�ed by the considerable gravitational in
uence of the black

hole. The mutual interaction b etween a stellar distribution and a massive black

hole have b een studied extensively (see Shapiro 1985 for a comprehensive review).

In summary, the presence of the black hole will cause a high density cusp to form

at the center of the cluster. This cusp extends out to a distance of approximately

r

a

=

GM

bh

�

2

= 0 : 43

 

M

bh

10

6

M

�

!

�

�

100 km s

� 1

�

� 2

p c ; (4.2)

where M

bh

is the mass of the black hole and �

2

is the velo city disp ersion of the

cluster. Beyond this distance, the in
uence of the black hole is small, and the

distribution function of the stellar orbits is close to that of an isothermal sphere.
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Previous studies have shown that a minority of the stars disrupted will come from

the central cusp (e.g., Duncan & Shapiro 1983). It is therefore acceptable to mo del

the stellar distribution using a truncated isothermal sphere, also known as a King

mo del (King 1966), and leave the central cusp out of the problem. Having left out a

p ossible source for tidal disruptions, our results should then b e viewed as providing

a lower limit to the disruption rate. The simplicity of the King mo del will allow

us to concentrate on the impact of using our hydro dynamic results instead of the

hard{sphere assumption used in previous work. A future improvement to this work

would b e to combine a Fokker-Planck co de with our hydro dynamic results in order

to grow self{consistently a black hole inside of a star cluster up to the present.

In this current study, we restrict our fo cus to the e�ect of hydro dynamics on the

exp ected fueling rate for the black hole.

The formalism we will use follows that of Binney & Tremaine (1987). The

King distribution function (DF) is a truncated isothermal sphere, meaning that

there are no stars with an energy greater than a threshold value E

0

, with E

0

< 0.

All stars will have the same mass M

?

. The energy p er unit mass of a star is given

by

E =

1

2

v

2

+ �( r ) : (4.3)

The quantity �( r ) is the self{p otential of the star cluster, and is determined by

solving Poisson's equation,

r

2

�( r ) = 4 � G� ( r ) ; (4.4)

where � ( r ) is the stellar density measured in units of mass p er unit volume. A

useful change of variables is to cho ose

� � � E + �

0

;

	 � � � + �

0

: (4.5)
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Because it di�ers from � by only the constant �

0

, the p otential 	( r ) also satis�es

the Poisson equation. The outer b oundary condition on 	 is 	( r

o

) = 0, where

r

o

is the radius at which the stellar density � drops to zero. The inner b oundary

	(0) is traditionally given in units of �

2

, where � is the one{dimensional velo city

disp ersion at the center of the cluster. The value of �

0

is chosen so that the King

DF f

K

= 0 for � � 0. Then the King DF is given by

f

K

( � ) =

8

<

:

�

1

(2 � �

2

)

� 3 = 2

[exp( �=�

2

) � 1] ; � > 0 ,

0 ; � � 0 ,

(4.6)

where �

1

is related to the central stellar density �

0

by a constant factor, and serves

as a normalization factor for f

K

. Given f

K

and Poisson's equation, the mass and

radius of the stellar cluster are determined solely by the choice of �

0

, �

2

, and

	(0) =�

2

. The core radius R

c

, inside of which the stellar density is fairly constant,

for the cluster can b e de�ned as

R

c

=

 

9 �

2

4 � GM

?

n

0

!

1 = 2

= 1 : 3

�

�

100 km s

� 1

� �

M

�

M

?

�

1 = 2

 

10

6

p c

� 3

n

0

!

1 = 2

p c ; (4.7)

where M

?

is the mass of a star and n

0

is the central numb er density of stars, related

to the central mass density �

0

by n

0

= �

0

=M

?

.

In this section, the stellar cluster referred to has a core radius R

c

of order 1 p c

for exp ected values of �

0

� 10

6

M

�

p c

� 3

, � � 100 km s

� 1

, and 	(0) =�

2

� 8. Within

our own galactic nucleus, studies of the dynamics of gas and stars are consistent

with a cluster having a core radius of � 1 p c (e.g., Haller et al. 1995). Otherwise,

unfortunately, only in a few nearby galaxies is it even plausible to observe a central

cluster. The observation is further complicated by the presence of a central black

hole, which will cause the light pro�le to b e steep er than that of just a stellar

cluster alone. For a prop er understanding, one must �t the observations with a
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mo del including b oth a black hole and a stellar cluster. For example, a recent

HST observation of M32 (Lauer et al. 1992b) was unable to resolve a central core.

However, when the observations were compared to calculations by Young (1980)

of the growth of a black hole in an initially isothermal core, it was found that a

central black hole of mass 2 : 8 � 10

6

M

�

pro duced the b est �t. In this mo del, the

initial isothermal stellar cluster had a core radius of 3 p c and a central density of

8 : 4 � 10

4

M

�

p c

� 3

. Similar observations of M31 (Lauer et al. 1993), M87 (Lauer et

al. 1992a), and NGC 7457 (Lauer et al. 1991) were all consistent with the presence

of a compact core at the center of each galaxy. In the case of M31, the situation is

even more complicated, as evidence for a double nucleus was found. Presumably,

these galaxies are not rare examples that just happ en to b e near the Milky Way,

and dense stellar cores are present in most, if not all, normal galaxies.

4.1.2 Loss{Cone Theory

We will now examine the following problem: given the stellar cluster mo del

from Section 4.1.1, at what rate do stars pass close enough to the black hole to

b e disrupted? A summary of previous work on this problem can b e found in

Shapiro (1985). Past studies have found that the the ma jority of stars which are

disrupted by a black hole are not b ound to the black hole and are on extremely

elongated orbits which take them inside the Ro che limit of the black hole (e.g.,

Duncan & Shapiro 1983). Let each star b e describ ed by its sp eci�c energy E and

sp eci�c angular momentum J . For conciseness, however, in this section E will b e

referred to as the \energy" of the star, and J will b e referred to as the \angular

momentum" of the star. The term \loss cone" describ es the p ortion of ( E ; J ) phase

space from which stars will b e disrupted. The loss{cone concept was �rst applied
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to the tidal disruption of stars by Frank & Rees (1976). For stars not b ound to

the black hole, the loss cone is actually more of a loss column, as p ointed out by

Cohn & Kulsrud (1978). This is b ecause an unb ound star will b e disrupted if its

angular momentum J is less than a constant value J

min

, indep endent of its energy

E . As stars are removed from the loss cone by disruptions, new stars are scattered

into the loss cone by distant encounters with other stars. Let j

2

( E ) b e the r.m.s.

angular momentum transferred, p er orbital p erio d, to a star through encounters

with other stars. Now if j

2

( E ) > J

min

, then stars will re�ll the loss cone at the

energy E as fast as it is depleted, in which case the loss cone is said to b e full. If

j

2

( E ) < J

min

then stars slowly di�use into the loss cone, which is then said to b e

empty. The transition b etween a full and an empty loss cone o ccurs at the energy

E

cr it

given by Duncan & Shapiro (1983)

j

2

2

( E

cr it

)

J

2

min

= ln

"

J

max

( E

cr it

)

J

min

#

; (4.8)

where J

max

( E

cr it

) is the angular momentum of a star in a circular orbit of energy

E

cr it

. Stars with E < E

cr it

have an empty loss cone, while stars with E > E

cr it

have a full loss cone. We will only consider the contribution from the stars with

E > E

cr it

. To prop erly handle the stars coming from an empty loss cone requires

the numerical solution of the Fokker{Planck equation. Fortunately, the contribution

from stars with E > E

cr it

dominate for the black hole masses and stellar cluster

parameters which are the fo cus of this study. However, since we are neglecting the

contribution from stars with E < E

cr it

, we will tend to underestimate the total

disruption rate for the cluster.

We will now, given the King DF, �nd the rate at which stars of a given impact

parameter b pass the black hole. To do so, we will follow the treatment of the

loss cone by Shapiro & Marchant (1978). A star of a given energy E will have an
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impact parameter b if its angular momentum is given by

J

2

captur e

( b ) = f 2( E + GM

bh

=b ) g b

2

' 2 GM

bh

b ; (4.9)

where M

bh

is the mass of the black hole. The latter approximation is valid b ecause

E will b e of order �

2

= 10

14

ergs = gm, while GM

bh

=b will b e of order 10

19

ergs = gm

for a 10

6

M

�

black hole and b = 100 R

�

, the Ro che radius for a solar mass star. In

other words, the velo city gained by a so on{to{b e{disrupted star as it falls into the

deep p otential well of the black hole is substantially larger than the typical velo city

of that same star far from the black hole.

It can b e shown (Shapiro & Marchant 1978) that the numb er of stars N ( E ; J )

with an energy b etween E and E + dE , and an angular momentum b etween J and

J + dJ , is given by

N ( E ; J ) = 8 �

2

f

K

( E ) P ( E ; J ) J dJ dE ; (4.10)

where f

K

( E ) is the King DF divided by the mass of the star to give a numb er

density instead of a mass density. The quantity P ( E ; J ) is the p erio d of a star with

energy E and angular momentum J . For a given value of E and J , there are two

turning p oints in the orbit of the star, r

+

and r

�

. We are interested in the latter.

In one orbital p erio d P ( E ; J ), all N ( E ; J ) stars will have had time to pass the

black hole at a distance of r

�

once. Therefore, the rate F ( E ; J ) at which stars of

energy E and angular momentum J pass by the radius r

�

is just N ( E ; J ) =P ( E ; J ),

or

F ( E ; J ) = 8 �

2

f

K

( E ) J dJ dE : (4.11)

Note that F ( E ; J ) has the dimensions of stars p er unit time. A star will have an

impact parameter less than a given value b

0

if its angular momentum is less than

J

captur e

( b

0

). Therefore, the rate F ( E ; b < b

0

) at which stars b etween energies E and
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E + dE and an impact parameter less than b

0

pass through p ericenter is given by

integrating F ( E ; J ) over J from 0 to J

captur e

. Since f

K

is only a function of E , the

resulting integral is trivial and F ( E ; b < b

0

) is given by

F ( E ; b < b

0

) = 8 �

2

GM

bh

b

0

f

K

( E ) dE : (4.12)

The quantity we seek is the total encounter rate of stars with an impact parameter

less than b

0

, which can b e achieved by integrating F ( E ; b < b

0

) over E . One

integration limit will b e E = �

0

, the energy of a star just b ound to the cluster. The

other integration limit will b e E

cr it

, the energy at which the loss cone go es from

full to empty. We will neglect the contribution from where the loss cone is empty

b ecause a prop er treatment requires the solution of the Fokker{Planck equation.

In doing so, we will underestimate the true rate, but, for the cluster parameters we

will consider, the loss cone is full throughout the ma jority of the central cluster,

and so this approximation will b e adequate. To determine E

cr it

, we must solve

equation (4.8). We will make use of the expression for j

2

2

( E ) given by Duncan &

Shapiro (1983). For J

min

, we use a value of (2 GM

bh

r

t

)

1 = 2

, since, as we will see,

for impact parameters larger than r

t

, the amount of mass stripp ed from the star

drops quickly. Therefore, the edge of the loss cone, which o ccurs at an angular

momentum where stars are just disrupted, will b e at an angular momentum close

to J

min

. Once we know E

cr it

, we can determine the total rate of encounters with an

impact parameter less than b

0

by integrating over the applicable range of energy

F ( b < b

0

) = 8 �

2

GM

bh

b

0

Z

E

cr it

�

0

f

K

( E ) dE : (4.13)

The di�erential encounter rate is given by dF =db

0

. This turns out to b e constant,

and will b e called �

0

�

0

= 8 �

2

GM

bh

Z

E

cr it

�

0

f

K

( E ) dE : (4.14)
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The dimensions of �

0

merit some explanation. The quantity F ( b ) is the rate at

which encounters with an impact parameter of b or less o ccur. The derivative of

F ( b ) is the constant quantity �

0

. The rate at which stars pass b etween a distance

of b and b + db is given by �

0

db , and �

0

has the dimensions of stars p er unit time

p er unit length.

4.1.3 Including the Hydro dynamic Details of Tidal Disruption

We must now turn to our SPH results in order to convert from the di�erential

encounter rate �

0

to the di�erential mass stripping rate. Consider a star which

encounters the black hole with an impact parameter b . Let S ( b ) b e the fraction

of the mass stripp ed from the star that will end up b ound to the black hole.

The function S ( b ) has b een derived from our SPH simulations of an n = 3 = 2

p olytrop e with a mass of 1 M

�

and a radius of 1 R

�

. These results are shown

in Figure 4.1. An n = 3 = 2 p olytrop e has a density pro�le similar to that of low

mass ( M � 0 : 4 M

�

or less) stars which dominate the present day mass function

(PDMF) of the solar neighb orho o d (Rana 1987). By using the n = 3 = 2 p olytrop e

results, we are assuming that the PDMF of the stellar cluster surrounding the

black hole is similar to that of the solar neighb orho o d. This assumption will su�ce

for the current calculation, as we want to keep our stellar cluster mo del simple in

order to more easily judge the a�ect of using our SPH derived S ( b ) instead of the

hard{sphere assumption used in previous work. For the sake of comparison with

the SPH derived S ( b ) in Figure 4.1, the hard{sphere assumption can b e stated

mathematically as

S

H S

( b ) =

8

<

:

1 ; b � r

t

,

0 ; b > r

t

.

(4.15)



96

Fig. 4.1.| Fraction of star which is stripp ed and b ound to the black hole after

an encounter with an impact parameter of b . This �gure is for the case of a 1 M

�

p olytrop e of index n = 3 = 2. For reference, the tidal radius r

t

for this p olytrop e is

6 : 96 � 10

12

cm.

We are now ready to combine the di�erential encounter rate �

0

with the

stripp ed mass fraction function S ( b ) in order to determine the di�erential stripping

rate � ( b )

� ( b ) = m

?

�

0

S ( b ) ; (4.16)

where m

?

is the mass of the star. For the purp ose of this calculation, we will b e

using m

?

= 1 M

�

in order to directly compare to the results of Duncan & Shapiro

(1983). The di�erential stripping rate � ( b ) gives the mass p er unit time stripp ed

from stars with impact parameters b etween b and b + db . The total stripping rate

for the cluster F is given by integrating � ( b ) over b . In practice we will cho ose

the upp er limit of b = 1 : 5 � 10

13

cm as the maximum impact parameter, as our

SPH results show this is where mass stripping stops. The lower limit for b requires

more careful consideration. If b is less than the Schwarzschild radius of the black

hole, then the star will simply b e swallowed by the black hole. Therefore, the



97

Schwarzschild radius sets an absolute lower limit. There is another consideration,

however. Early work on the tidal disruption of stars by Carter & Luminet (1982)

brought up the p ossibility that the star will b e so strongly deformed by the tidal

forces of the black hole that enhanced nuclear burning in the star could cause an

explosion. The energy of the explosion might allow most of the material from the

star to escap e from the black hole. Although our SPH calculations in Chapter 3

did not directly address this prediction of Carter & Luminet, our work supp orts

their �nding that the central density of the star increases signi�cantly for close

encounters. However, for a solar mass star and a 10

6

M

�

black hole, the di�erence

b etween the Schwarzschild radius and the impact parameter where the compression

of the star b ecomes signi�cant is only of order a factor of 2. These close encounters

are so rare that changing the lower integration limit to take into account the e�ect

predicted by Carter & Luminet will hardly a�ect the total stripping rate for the

cluster. Therefore, we will use the Schwarzschild radius as the lower integration

limit.

We are now ready to consider an example using a galactic nucleus with typical

parameters. We will cho ose 	(0) = 8 �

2

, n

0

= 10

6

stars = p c

3

, � = 200 km = s,

m

?

= 1 M

�

, and M

bh

= 10

6

M

�

. The value of 	(0) is chosen to b e the same as

that used by Duncan & Shapiro (1983) in their study of the evolution of a massive

black hole at the center of a King cluster. The cluster will have a core radius of

R

c

= 2 : 6 p c. The cumulative mass function for the stellar cluster will b e called

M ( r ) and is plotted in Figure 4.2. The stellar mass density � ( r ) is shown in Figure

4.3. Using equation 4.14, we �nd that the di�erential encounter rate has a value of

�

0

= 8 : 4 � 10

� 25

stars = sec = cm : (4.17)

To make this numb er more tractable, consider that the numb er of stars passing p er
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Fig. 4.2.| Total mass inside of a given radius r for the stellar cluster mo del

presented in the text.

Fig. 4.3.| Density pro�le � ( r ) for the stellar cluster mo del presented in the text.
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second within the Ro che radius r

t

of the black hole is r

t

�

0

. For a 1 M

�

star with

r

t

= 100R

�

, this translates into one disruptive encounter with the black hole every

5400 years. By combining this value of �

0

with the SPH derived stripp ed mass

fraction function S ( b ), we �nd the di�erential stripping rate � ( b ), given in Figure

4.4. The cumulative stripping rate, shown in Figure 4.5, is given by integrating

� ( b ), and represents the rate at which material is stripp ed from stars on orbits with

an impact parameter less than or equal to a given value of b .

It was mentioned ab ove that deep encounters may p ossibly lead to the

explosion of the star, causing all of the stellar material to escap e from the black

hole. This is only imp ortant for stars with an impact parameter of b � 5 � 10

11

cm

or less. As can b e seen in Figure 4.5, the contribution to the total stripping rate

by stars on these orbits is less than 5%. Therefore, our decision to simply use the

Schwarzschild radius as our inner b oundary has only a small e�ect on the total

stripping rate.

The cumulative stripping rate levels o� around an impact parameter of

b = 10

13

cm b ecause b eyond that distance a star do es not lose mass, as shown by

the plot of S ( b ) in Figure 4.1. The total rate at which mass is stripp ed from stars

by the black hole is

F = 1 : 1 � 10

� 4

M

�

yr

� 1

: (4.18)

We will now compare our result to that of previous work by Duncan & Shapiro

(1983), who used the hard{sphere assumption. They considered a mo del using an

isothermal sphere for the star cluster. All stars were assumed to have a mass of

1 M

�

, as in our calculation ab ove. In addition, they assumed that the loss cone

was full at all energies. The expression they derived for the total stripping rate is
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Fig. 4.4.| Di�erential mass stripping rate � ( b ).

given by

F

f ull

= 0 : 31 v

5

350

M

4 = 3

8

N

� 2

8

M

�

yr

� 1

: (4.19)

Here, v

350

is the one{dimensional velo city disp ersion � expressed in units of 350

km/sec, M

8

is the mass of the black hole in units of 10

8

M

�

, and N

8

= 2 : 19 n

0

R

3

c

= 10

8

.

For the present calculation v

350

= 0 : 57, M

8

= 0 : 01, and N

8

= 0 : 38. These give

a total stripping rate of F

f ull

= 2 : 8 � 10

� 4

M

�

yr

� 1

, somewhat larger than our

result of 1 : 1 � 10

� 4

M

�

yr

� 1

. To make our calculation closer to that of Duncan &

Shapiro, we can take our stellar cluster mo del and use the hard{sphere assumption

instead of our SPH derived S ( b ). Doing so, we �nd a total stripping rate of

1 : 8 � 10

� 4

M

�

yr

� 1

. Our estimate is still lower than that of Duncan & Shapiro,

most likely b ecause they assumed that the loss cone was full at all energies. In our

calculation, we have restricted our sum to only those energies where the loss cone

is full. If we remove this restriction and integrate over all energies, we �nd a total

stripping rate of 2 : 4 � 10

� 4

M

�

yr

� 1

. The remaining discrepancy can b e explained
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Fig. 4.5.| Cumulative mass stripping rate. Note that the ma jority of stripp ed

mass comes from stars which pass inside of the Ro che radius r

t

= 6 : 96 � 10

12

cm.

by our use of a King Mo del, which is of �nite extent, and their use of an isothermal

sphere, which extends to in�nity.

The surprising conclusion which can b e made from this example is that

using our hydro dynamic results reduces the rate at which material is stripp ed

by a factor of two, compared to estimates that use the hard{sphere assumption.

This result can b e easily understo o d if one considers the stripp ed mass fraction

function S ( b ) in Figure 4.1. The tidal radius for the p olytrop e used in the SPH

calculation was r

t

= 6 : 96 � 10

12

cm. For encounters with an impact parameter of

r

t

or less, Figure 4.1 shows that the star loses one{half of its material to the black

hole, and, for larger impact parameters, the amount of material lost drops to zero

rapidly. The hard{sphere assumption states that the entire star is accreted for

impact parameters less than r

t

, and that no material is accreted for larger impact

parameters. Therefore, the hard{sphere assumption is essentially correct if one

mo di�es it to state that one{half of the star is accreted for impact parameters of
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r

t

or less. This conclusion is a result of the fact that the amount of mass stripp ed

from the star (in this case an n = 3 = 2 p olytrop e) is a sensitive function of the

impact parameter b for b near r

t

. Although we have only considered one set of

values for a galactic nucleus here, this �nding should b e universal for any stellar

cluster since it do es not dep end on the cluster characteristics, just the details of

the hydro dynamics of the disruption pro cess.

4.2 Overall Role of Tidally{Disrupted Stars as a Fuel Source

We now have an estimate of the rate at which a black hole can b e fed by

the tidal disruption of stars. It is interesting to compare this rate to that from

other sources of gas for the black hole. The two main p ossible other sources of

gas which have b een considered in the literature are stellar collisions and stellar

winds. Duncan & Shapiro (1983) included stellar collisions in their Fokker{Planck

simulations of the growth of a black hole in a galactic nucleus. The following

expression was given for the rate at which material is freed through stellar collisions

in an isothermal sphere of solar mass stars

F

coll

= 2 : 4 � 10

� 3

v

5

350

( v

2

350

+ 0 : 77)

N

8

M

�

yr

� 1

; (4.20)

where the de�nition of the quantities are the same as for equation (4.19). Using the

values from our example in the previous section gives F

coll

= 4 : 2 � 10

� 4

M

�

yr

� 1

,

ab out a factor of two greater than the fueling rate due to the tidal disruption of

stars given by equation (4.19). This estimate ignores the presence of a massive

black hole, which will cause the stellar velo city disp ersion and density to increase

towards the center of the cluster. The net e�ect will b e to increase the collisional

rate ab ove that predicted by equation (4.20). As the mass of the black hole
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increases, so do es the enhancement to the collision rate. However, for a 10

6

M

�

black hole, this e�ect is not strong, and the factor{of{two di�erence b etween the

tidal disruption and stellar collision rates should not require much mo di�cation.

Another series of Fokker{Planck calculations including stellar collisions have

b een p erformed by Murphy et al. (1991). These calculations also included mass

loss due to stellar evolution and used a multimass Fokker{Planck co de versus the

single mass Fokker{Planck co de employed by Duncan & Shapiro. For initial central

stellar densities of a few times 10

7

M

�

p c

� 3

, they found that stellar collisions are

the dominant source of material. In these clusters, the present day black hole mass

was of order 10

9

M

�

. For lower black hole masses and stellar densities, they found

that stellar evolution was the dominant source of fuel. In one of their mo dels,

they chose �

0

= 7 � 10

5

M

�

p c

� 3

, which led to a present{day black hole mass

of 3 : 5 � 10

6

M

�

p c

� 3

. These values are close to the parameters we used in the

previous section to calculate the fueling rate from the tidal disruption of stars. For

this simulation, Murphy et al. found that stellar evolution pro duced material at a

rate ab out a factor of ten greater than the tidal disruption of stars. In addition,

material from stellar collisions was pro duced at ab out one{tenth the rate due to

the tidal disruption of stars. This is in stark contrast to the rate given by equation

(4.20) from the work of Duncan & Shapiro, which predicted that stellar collisions

would provide material at ab out twice the rate as the tidal disruption of stars.

A ma jor uncertainty in b oth the work of Duncan & Shapiro and Murphy

et al. are the stellar collisional cross sections. Much like the hard{sphere

assumption these works use to treat the tidal disruption of stars, assumptions had

to b e made concerning the cross section for two stars to collide. Hydro dynamic

simulations of the collision of two stars now exist (e.g., Benz & Hills 1987), and
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new Fokker{Planck simulations are needed to prop erly mo del the rate at which

stellar collisions provide material. Another consideration is that the lib eration of

material by stellar evolution and stellar collisions o ccurs throughout the cluster.

The migration of this gas down to the black hole is not a given, and the predicted

fueling rates from these two sources must b e viewed as upp er limits. For example,

mass loss from a star due to a stellar wind may send material in all directions. Only

a fraction of this material will actually move on orbits which lead to b eing accreted

by the black hole. On the other hand, the tidal disruption of a star dep osits all of

the lib erated material within 100 Schwarzschild radii or less, meaning it is almost

certain that all of this material will b ecome part of an accretion disk. Again, more

detailed calculations are required to fully understand the role of each fuel source in

the feeding of the central black hole.

Finally, a ma jor fo cus of this work is to consider the utility of the tidal

disruption of stars in order to detect quiescent black holes in the nuclei of galaxies.

Even if the tidal disruption of stars do es not provide as large a time{averaged

fueling rate as collisions or stellar evolution, when a star do es disrupt, it provides

material at a rate of order 1 M

�

yr

� 1

to the central black hole for a p erio d of order

one year. In contrast, stellar evolution provides material at the fairly steady rate

of 10

� 4

{10

� 5

M

�

yr

� 1

for the case considered ab ove from Murphy et al. Stellar

collisions should provide material in bursts somewhat like the tidal disruption

of stars, but it is unclear at what rate the debris from a stellar collision will b e

accreted by the black hole. It would seem that this would dep end strongly up on

the magnitudes and orientations of the velo cities of the two stars colliding. Given

these considerations, although it app ears that tidal disruptions are not the main

source of fuel by which a black hole grows to its present day mass, these events are

highly suited for our purp ose of detecting black holes in dead AGN.
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4.3 Observational Consequences of a Tidal Disruption Event

Using our SPH simulations, we have now determined how much mass is

stripp ed from a star which passes a black hole with a given impact parameter.

Unfortunately, the disruption event is unlikely to b e observed by astronomers since

it takes place on the time scale of hours. Furthermore, the debris of the star co ols

so rapidly as it expands that it would b e nearly imp ossible to detect such an event

in the dense star �eld present at the center of a galaxy. It app ears that the only

practical way to detect a disruption event in a galactic nucleus is to wait for the

stripp ed material to b e accreted by the black hole (Rees 1988).

It is currently imp ossible to follow computationally the debris of the disruption

event all the way to the p oint at which it is accreted by the black hole. Several

authors, however, have sp eculated on what we should exp ect to happ en (Rees 1988;

Evans & Ko chanek 1989; Cannizzo et al. 1990; Syer & Clark 1992; Ko chanek 1993;

Rees 1994). We will now summarize the main �ndings of these works. The material

stripp ed from the star initially follows a distribution of Keplerian orbits ab out the

black hole, as the material has co oled to the p oint that hydro dynamic forces are

not signi�cant and the gravitational �eld of the black hole dominates. The fraction

of the debris b ound to the black hole will follow highly elliptical orbits, with the

most tightly b ound material having an orbital p erio d of (Rees 1988)

P

min

' 0 : 03 M

1 = 2

6

yr ; (4.21)

where M

6

is the mass of the black hole in units of 10

6

M

�

. Rees (1988) has

predicted that the rate at which mass returns to p ericenter as a function of time is

given by

_

M ' 25 M

� 1 = 2

6

( t=P

min

)

� 5 = 3

M

�

yr

� 1

: (4.22)
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Earlier SPH calculations by Evans & Ko chanek (1989) and Laguna et al. (1993),

as well as our own SPH calculations (for example, see Figure 3.4), have con�rmed

this expression with only minor mo di�cations. Due to the wide range of orbital

p erio ds present, the debris will stretch out into a long, thin streamer of gas . At

this stage, the debris would not strongly radiate, as it consists of very cold gas.

Several factors could cause the gas to b ecome visible. Rees (1988) mentions

that the closest approach of the debris up on return is approximately the same as

the impact parameter of the star from which the debris originated. For a 10

6

M

�

black hole and a solar{typ e star passing at a distance of r

t

, this corresp onds to a

distance of approximately 20 Schwarzschild radii. Relativistic orbital precession is

non{negligible at this distance, so, after a few orbits, the most tightly b ound debris

will collide with material on longer p erio d orbits (Rees 1988). The resulting sho ck

would raise the temp erature of the gas to a temp erature of 10

5

K or greater. The

debris is then thought to form an accretion disk, which could p ossibly b e elliptical

(Syer & Clark 1992). It is b elieved that the material will b e accreted by the black

hole at the rate given by equation (4.22), as long as this rate is less than (Rees

1988)

_

M

cr it

= 0 : 02 �

� 1

0 : 1

M

6

M

�

yr

� 1

; (4.23)

where �

0 : 1

is the e�ciency of the disk at radiating the rest mass of infalling debris,

in units of 10%. This limit corresp onds to the disk luminosity b eing equal to the

Eddington luminosity L

E

L

E

= 1 : 1 � 10

44

M

6

ergs s

� 1

: (4.24)

If L > L

E

, then material will b e falling in faster than the black hole can swallow

it, raising the p ossibility that a small fraction of the debris will b e accreted

with su�cient energy to eject the remaining debris (Rees 1988). An alternative
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p ossibility is that the radiative e�ciency � of the disk will drop so that all of the

debris can b e accreted at a luminosity close to L

E

. The di�erence is that in the �rst

p ossibility, there would b e a brief 
are followed by no emission, while in the second

p ossibility, the disk would radiate at a luminosity near the Eddington luminosity

until the infall rate dropp ed su�ciently for the black hole to accept the debris with

normal radiative e�ciency. The luminosity would then decline following equation

(4.22). Only a detailed calculation will b e able to resolve b etween these two

p ossibilities. Another complication arises if the black hole has a Kerr metric (Rees

1988). In that case, if the orbital axis of the debris is not aligned with the black

hole's spin axis, the Lense{Thirring e�ect will cause the orbital axis of the debris

to precess. In that case, the time scale for the stream to intersect itself could b e

considerable lengthened, and clearly this could a�ect the formation of an accretion

disk. However, like previous authors, we will pro ceed assuming that we can ignore

this complication, as a detailed calculation will b e necessary to do otherwise.

In this work, we are primarily interested in black holes with a mass of order

10

6

M

�

. Assuming a radiative e�ciency � with the canonical value of 0 : 1, the

accretion rate corresp onding to L

E

is 0 : 02 M

�

yr

� 1

. Our SPH calculations of the

tidal disruption of an n = 3 = 2 p olytrop e show that the mass return rate exceeds

this limit for ab out one year, indep endent of the impact parameter of the star which

was disrupted. We also �nd that the p eak rate at which mass returns is also fairly

indep endent of the impact parameter. If we now assume that all of the material

will b e accreted (the second p ossibility mentioned in the previous paragraph), the

signature of a tidally{disrupted star will b e a 
are of nearly constant luminosity

L

E

for a p erio d of approximately one year. Afterwards, the accretion rate will b e

less than the critical value determined by the Eddington luminosity. If one assumes

that � remains constant, then the luminosity will have the same temp oral b ehavior
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as the mass accretion rate given by equation (4.22) until the mass accretion rate

b ecomes so low that � starts to decrease. The p ossibility of detecting a massive

black hole in this manner was �rst recognized by Rees (1988).

Very little is currently understo o d concerning the energy sp ectrum of the


are, as it dep ends up on the details of the accretion 
ow near the black hole.

Some general comments are p ossible, however. When the stream of material �rst

intersects itself, the resulting sho ck could heat material to � 10

7

K (Rees 1988).

This is b ecause the two parts of the stream which intersect could collide with

velo cities which are relativistic. Later, after the material has formed an accretion

disk, the e�ective black{b o dy temp erature of the radiation will b e � 10

5

K for

a 10

6

M

�

black hole. Therefore, the energy sp ectrum should b e dominated by

extreme ultraviolet and soft X{ray photons.

It should b e p ossible to detect X{ray 
ares from tidally{disrupted stars using

a large survey like the ROSAT Al l Sky Survey (RASS) (Sembay & West 1993).

Sembay & West have estimated that if most bright galaxies ( M

B

< � 20) contain

a massive black hole, at least several hundred if not several thousand 
ares could

have b een detected by the RASS. Another way to lo ok at this estimate is as follows:

b ecause the time scale for the disruption of a star in a galactic nucleus is of order

10

3

{10

4

years and the p eak of the 
are lasts of order 1 year, one would exp ect at

least 1 out of every 10

4

galaxies to b e in the 
are state. Sembay & West assumed

that one{half of the star was accreted by the black hole if the star passed within r

t

.

Our SPH results con�rm this assumption to b e reasonable. In addition, Sembay &

West assumed that the debris would b e accreted at near the Eddington luminosity

for a p erio d equal to the length of the RASS, six months. This assumption is

uncertain until detailed calculations are available concerning the accretion of the
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stripp ed debris. It would seem that this assumption would give an upp er limit on

the numb er of detectable events, as the truth might b e that the debris accretes at

a sup er{Eddington rate for only a short p erio d, during which the remaining debris

is blown away instead of accreted. In either case, in order to detect any 
ares, it

will b e necessary to compare the RASS observations to observations from another

ep o ch, such as the Einstein IPC database. Con�rmation of the predicted numb er

of 
are events would b e strong evidence that most normal galaxies go through an

AGN phase during their lifetime. Likewise, the failure to detect many events would

probably indicate that AGN activity is the exception, not the rule, in the life of a

galaxy.

4.4 Current Observational Evidence for Tidally{Disrupted Stars

4.4.1 The X{ray Outburst of IC 3599

The most likely metho d of detecting the tidal disruption of a star is from the

asso ciated X{ray 
are, which lasts of order one year (Rees 1994). Such an event

may have already b een observed during ROSAT observations of the Seyfert galaxy

IC 3599 (Grup e et al. 1995). They measured 4 : 9 counts p er second in a Decemb er

1990 observation from the RASS. Following p ointed observations with ROSAT

gave 0 : 064 counts p er second in Decemb er 1991, 0 : 043 counts p er second in June

1992, and 0 : 023 counts p er second in June 1993. This corresp onds to a decrease

in luminosity by over a factor of 100 in a few years. Grup e et al. claim that it is

unlikely that this variation in luminosity is due to a temp orary absorbing screen.

The observations seem instead to suggest that the feeding rate of the black hole

made an abrupt change.
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Grup e et al. are able to set limits on the mass of the central black hole using

the following pro cedure. If one assumes that the p eak X{ray luminosity observed

from IC 3599 is less than or equal to the Eddington luminosity, the mass M

bh

of

the central black hole must b e

M

bh

> 0 : 4 � 10

6

M

�

: (4.25)

One can also set an upp er limit on the mass of the black hole using the � 500 km = s

line widths of [FeX] � 6375 and [FeVI I] �� 5721 ; 6086. If one assumes that the width

of these lines is larger than the Keplerian velo city at a distance of R , the mass of

the black hole must b e

M

bh

< 33 ( R= 1 p c) � 10

6

M

�

: (4.26)

This limit should b e met with caution, as the exact choice of R is not strongly

constrained. Note that the range of masses prop osed by Grup e et al. is centered

near a mass of 10

6

M

�

. Finally, it can b e shown (e.g., Blandford & Rees 1992)

that a black hole mass near 10

6

{10

7

M

�

is consistent with the observed thermal

sp ectrum having a temp erature of k T � 60{100 eV . Consider that the ma jority of

the luminosity from the disk comes from the innermost region, say from r < 10 R

g

(Shakura & Sunyaev 1973), where R

g

is the Schwarzschild radius given by

R

g

=

2 GM

bh

c

2

(4.27)

= 3

 

M

bh

10

6

M

�

!

� 10

11

cm : (4.28)

For the sake of this calculation, we will assume that the disk can b e approximated

as a spherical black b o dy with a radius of R

bb

= 10 R

g

. The luminosity of this black

b o dy will b e

L

bb

= 4 � � R

2

bb

T

4

bb

; (4.29)
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where T

bb

is the temp erature of the black b o dy. Substituting a value of 10 R

g

for

R

bb

, and using equation (4.28) to eliminate R

g

, we �nd that

L

bb

= 6 : 4 � 10

19

M

6

T

4

bb

ergs s

� 1

: (4.30)

If we now divide b oth sides by the Eddington luminosity L

E

, given by equation

4.24, and solve for T

bb

, we �nd that the e�ective temp erature of the disk is given by

T

bb

= 1 : 1 � 10

6

M

� 1 = 4

6

�

L

bb

L

E

�

1 = 4

K

' 100 M

� 1 = 4

6

�

L

bb

L

E

�

1 = 4

eV : (4.31)

Therefore, if we assume that the luminosity of the 
are is less than L

E

, we require

that the mass of the black hole to b e of order 10

7

M

�

or less to b e consistent with

the observed thermal sp ectrum temp erature of 60{100 eV .

As mentioned ab ove, Grup e et al. prop osed that the X{ray luminosity varied

in resp onse to a change in the accretion rate. One explanation o�ered for why

the accretion rate varied over this p erio d was an instability in the accretion disk.

Although this scenario app ears to work if one tweaks the disk parameters, we

would like to explore the second explanation o�ered by Grup e et al. { the accretion

of material from a tidally{disrupted star. Let us now see if the temp oral b ehavior

of the outburst is consistent with this hyp othesis. As discussed in the previous

section, if the rate at which the tidally{stripp ed material returns to the black hole

exceeds the rate allowed by the Eddington luminosity, one p ossibility is that the

disk will adjust itself to allow the material to b e accreted with an e�ciency so

that its luminosity is approximately L

E

. The luminosity of the disk would stay

near L

E

until the rate at which material returns to the black hole drops b elow

the Eddington limit. Following Rees (1988), we seek to �nd the duration P

edd

of

this constant p ortion of the light curve. The temp oral b ehavior of the accretion
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rate is given by equation (4.22). We simply need to �nd how long the rate given

by equation (4.22) is greater than the Eddington rate given by equation (4.23).

Performing this calculation gives

P

edd

' 2 : 16 �

0 : 6

0 : 1

M

� 0 : 4

6

yr : (4.32)

The reader will now �nd it instructive to consult Figure 4.6 during the

following discussion. This �gure plots

_

M and L versus time. The star is �rst

disrupted at t = 0, and then the �rst material b egins to return to the black hole

at the time t ' P

min

, where P

min

is given by equation (4.21). From this time on

we will assume that the tidally{stripp ed material is accreted by the black hole at

the rate it returns from its elliptical orbits. This means the accretion rate of the

black hole will follow equation (4.22). For a black hole mass of 10

8

M

�

or less,

there will b e a p erio d where the accretion rate exceeds the Eddington rate. In that

case, there will b e a p erio d of length P

edd

over which the light curve is constant, as

shown in in Figure 4.6. We have assumed that the disk is able to adjust itself so

�

_

M c

2

is less than or equal to L

E

, as discussed in the previous section.

Let us now assume that the Decemb er 1990 observation corresp onds to the end

of p erio d of constant luminosity, i.e., t = P

min

+ P

edd

. From this time onwards, we

assume that L /

_

M , since the accretion rate will now b e less than the Eddington

rate. The next observation o ccurs in Decemb er 1991 and is a factor of 76 : 5 lower

than the Decemb er 1990 measurement. The luminosity after Decemb er 1991 do es

not change signi�cantly compared to this initial drop. Since IC 3599 is a Seyfert

galaxy, there may b e steady X{ray emission, and we should not exp ect the X{ray

luminosity to drop to zero when all of the tidally{stripp ed debris has b een accreted.

Let us therefore concentrate on the initial drop in X{ray luminosity b etween

Decemb er 1990 and Decemb er 1991. Because L /

_

M , and

_

M follows equation
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M
Disrupts

Star

L x
M

0

t

P +P

Edd

P +P + 1 yr

t
-5/3December

1990

December
1991

EddminEddminPmin

Fig. 4.6.| Prop osed scenario for the IC 3599 outburst. At t = 0 a star is disrupted

by the massive black hole. The material stripp ed from the star b egins accreting

around t ' P

min

. At this time, the accretion rate

_

M is greater than that allowed by

the Eddington rate

_

M

E dd

. The accretion disk adjusts itself so that it accepts all the

incoming material with a lower e�ciency, and the luminosity L

x

will b e constant

and have a value near L

E dd

. When

_

M <

_

M

E dd

, the luminosity is assumed to b e

prop ortional to

_

M , which will follow equation (4.22) at all times after t = P

min

. It

will b e assumed that the Decemb er 1990 ROSAT observation o ccurred at the end

of the constant p ortion of the light curve. For full details, consult the discussion in

the main text.
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(4.22), we can write the following relationship b etween the luminosity on Decemb er

1990 and Decemb er 1991

L (1990)

L (1991)

= 76 : 5 =

�

P

min

+ P

edd

+ 1 yr

P

min

+ P

edd

�

5 = 3

: (4.33)

This can b e simpli�ed to the relationship

P

min

+ P

edd

= 0 : 08 yr : (4.34)

It turns out there is no physical solution for the mass of the black hole, when

equations (4.21) and (4.32) are substituted for P

min

and P

edd

. What this means is

that if this X{ray burst is due to the accretion of tidally{stripp ed debris, then the

accretion mechanism do es not work as we assumed. It is not p ossible to have such

a strong decrease in the X{ray luminosity in such a short time. These conclusions

are based on the assumption that all material is still accreted when the accretion

rate is sup er{Eddington. Another p ossibility mentioned in the previous section is

that some material is accreted at the sup er{Eddington rate, but radiates su�cient

energy to lib erate the remaining material from the black hole. In this case, one

would exp ect a brief p erio d of strong X{ray emission followed by an abrupt drop.

At this time, it is imp ossible to cho ose whether either scenario is correct. It

will probably require sophisticated mo deling of the accretion pro cess in order to

understand this problem fully.

In conclusion, the observations of IC 3599 are within the realm of what we

might exp ect from the accretion of a tidally{disrupted star, but this statement

only b elies our lack of understanding of how the material is accreted once stripp ed

from the star. Let's review some other p ossibilities forwarded by Grup e et al. It

is unlikely that a change of a factor of 100 in luminosity is due to change in the

optical depth to the X{ray source. Grup e et al. also discount the p ossibility that
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this outburst is due to a single sup ernova, which would b e to o faint to explain the

observed luminosity. The �nal option considered is a short{term increase in the

accretion rate due to instabilities in the accretion disk. This app ears to work if

the prop er parameters are chosen, but it is not clear that these parameter values

are reasonable. Therefore, while it is conceivable that the X{ray 
are observed

from IC 3599 was due to the tidal disruption of a star, this is by no means the only

plausible explanation.

4.4.2 Balmer Line Variability in NGC 1097

There is a class of AGN known as low{ionization nuclear emission{line

regions, or LINERs (Heckman 1980). As their name suggests, narrow low{

ionization emission lines (e.g., H � , [OI] � 6300, and [O I I] � 3727) are the dominant

sp ectroscopic feature of these ob jects. There has b een some debate to date ab out

whether the emission lines are excited by sho cks or photoionization. Recently,

Eracleous et al. (1995a, hereafter ELB) have prop osed a new photoionization mo del

for LINERs which was motivated by the results of an ultraviolet (UV) snapshot

survey of 26 LINERs using HST by Maoz et al. (1995). If photoionization is the

excitation mechanism, it is exp ected that a compact nuclear UV source should

b e present in each ob ject. Instead, only 5 of the 26 LINERs observed had such a

nuclear region. One obvious interpretation is that 80% of the ob jects had material

which obscures the central UV source. Another p ossibility is that the excitation

mechanism is one that do es not require a central UV source, such as sho cks.

However, ELB take a di�erent stance on the HST observations in saying that they

represent a p opulation p owered by a central UV source that is only active 20%

of the time. They prop ose that, normally, the central black hole is starving for
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material. When a star is tidally disrupted, the black hole b ecomes a UV source

and photoionizes the surrounding medium. The black hole is exp ected to b e a

signi�cant UV source for only several decades. Using a photoionization mo del,

ELB �nd that when the UV 
ux from the black hole drops, the high{ionization

lines such as [OI I I] � 5007 are found to also drop as the atoms recombine. However,

low{ionization lines are found to p ersist until the next exp ected tidal disruption

of a star. In order for the duty cycle to b e 20%, they require a black hole mass

of order 10

7

M

�

. Considering that one{third of all spiral galaxies are observed to

b e LINERs (Ho et al. 1995), if this mo del is correct, then we are witnessing the

results of the tidal disruption of stars all around us.

To supp ort their mo del, ELB p oint out the recent outburst of the LINER

NGC 1097 (Storchi{Bergmann et al. 1993). In this outburst, the sp ectrum of

NGC 1097 underwent a change from a LINER sp ectrum to that of a Seyfert 1

galaxy with the app earance of broad, double{p eaked Balmer lines and a featureless

continuum in the optical. Further observations revealed that the broad H � pro�le

varied with time. Eracleous et al. (1995b) have mo deled this variation as the

precession of an elliptical ring around a 10

6

M

�

black hole. The ring is b elieved to

have formed from the debris of a tidally{disrupted star. If that is the case, then we

are witnessing the start of the active cycle of this LINER. In a few decades, the

featureless continuum will have faded, and, so on afterwards, the high{ionization

lines will have disapp eared.

The duty cycle hyp othesis of ELB suggests a new way to search for tidal

disruption events. Using NGC 1097 as an example of what such an event would

lo ok like, we exp ect the broad Balmer lines to p ersist for at least several years.

Dep ending on the mass of the central black hole as well as the central star cluster
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parameters, we exp ect a star to b e disrupted every 10

2

{10

4

years. If the duty cycle

hyp othesis is correct, an observing program that checked several hundred LINER

galaxies every few years would catch many in an outburst stage like NGC 1097

exhibited. Since LINER galaxies include nearby, bright galaxies, this program

would not require deep exp osures of each ob ject. It might even b e p ossible to use

a multi{ob ject �b er sp ectrograph to sample large numb ers of galaxies at once in a

galaxy cluster.

4.5 Conclusions

There is now mounting evidence that massive black holes exist in the cores

of some nearby galaxies. Dynamical evidence exists for the presence of a massive

black hole not only in our own Galaxy, but in several nearby galaxies as well.

Currently, the only reasonable explanation for the source of p ower of AGNs relies

heavily up on the existence of a massive black hole in the central engine. What is of

greater uncertainty is how common it is for a galaxy to form a central black hole.

Studies of the evolution of the quasar luminosity function suggest either (a) that

most galaxies went through a short AGN phase and should have a � 10

7

M

�

black

hole, or (b) that only a few galaxies went through a long AGN phase and p ossess

a 10

9

{10

10

M

�

black hole (Boyle et al. ). Of course, as it is with most things, the

truth is probably somewhere b etween these two extremes.

If we were able to detect the presence of a massive black hole in a galaxy

not currently in the AGN phase, it would b e p ossible to determine how many

galaxies have a massive black hole. For nearby galaxies, it is p ossible to use

dynamical evidence to detect the gravitational in
uence of a black hole on stars.

Unfortunately, this technique is impractical for the large ma jority of galaxies due



118

to the high spatial resolution that would b e required. However, it is still p ossible

to detect the presence of a black hole by the destructive in
uence it would have on

stars that stray to o close. The disruption of a star would feed of order 1 M

�

of

material into the previously dormant black hole, resulting in an X{ray outburst at

near the Eddington luminosity L

E

(given by equation 4.24) for a p erio d of order

one year. Lo oking for such outbursts in otherwise quiescent galaxy nuclei o�ers an

e�ective, if not the only, way to detect massive black holes in the cores of these

galaxies.

To estimate how often outbursts will o ccur in a given galaxy requires knowledge

of the disruption pro cess. Previous estimates have assumed that if a star passed

closer than a threshold distance, it was disrupted and completely accreted (the

hard{sphere assumption). Only recently has it b ecome p ossible to numerically

calculate the details of the disruption pro cess. Using a series of SPH calculations,

we have mapp ed out the dep endence of the mass lost by a star as a function of its

closest approach to the black hole. We �nd that if we use these SPH results instead

of the hard{sphere assumption used in previous calculations, we have slightly more

disruption events, but the total mass accreted is approximately half that which

would b e exp ected using the hard{sphere assumption. These conclusions come

ab out for two reasons. One is b ecause the SPH results show that a star will lose

some material for a larger impact parameter than the threshold distance used for

the hard{sphere assumption. This results in more disruption events. Secondly,

the reason the SPH results yield half the total mass that the hard{sphere results

do is b ecause the star can only lose at most one{half of its mass to the black

hole. The hard{sphere assumption says that all of the star is accreted. Since the

distance at which the SPH simulations show that the star is completely disrupted

is comparable to the threshold distance used in the hard{sphere calculations, the
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result is one{half as much total accreted material in the SPH case.

These preliminary results indicated that past estimates of the disruption rate

for a given galaxy are reasonable, since our results do not signi�cantly change

the numb er of disruption events exp ected. However, previous work concerning

the growth of a massive black hole from a small seed black hole may need to b e

re{examined, as they have overestimated the total amount of mass that could b e

accreted by a factor of two. New simulations using a Fokker{Planck co de which

incorp orate our SPH results to grow a massive black hole from a seed hole need to

b e done. Work by Murphy et al. (1991) indicates, however, that tidal disruptions

are only imp ortant for the growth of smaller black holes ( � 10

6

M

�

). Larger black

holes ( � 10

8

M

�

) dep end on debris from stellar collisions for the ma jority of their

mass. Given these considerations, the factor{of{two di�erence our results intro duce

seem to indicate that past studies captured the essential elements of the disruption

pro cess by using the hard{sphere assumption. However, using our SPH results,

future studies will b e able to include more accurately the tidal disruption pro cess

when mo deling the evolution of a massive black hole in a galactic nucleus.
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Chapter 5

CONCLUSIONS AND FUTURE

WORK

The p ossibility exists that a large fraction of present day galaxies harb or a

massive black hole. This is suggested by studies of the contribution to the X{ray

background from Active Galactic Nuclei (AGN), as well as studies of the density

and luminosity evolution of AGN. On a more lo cal scale, evidence exists for the

presence of a massive black hole in many nearby galaxies. Kinematic studies of

gas and stars in the central parsecs of our own Galaxy suggest the presence of an

� 10

6

M

�

black hole at its core. Photometric and kinematic studies for several

nearby galaxies, such as M31 and M32, also suggest these galaxies p ossess a

massive, central black hole. Unfortunately, it is not p ossible to detect a � 10

6

M

�

black hole by these metho ds except in only the nearest of galaxies. This is b ecause

the black hole in
uences a region of order 1 p c at the center of a galaxy, and at

the distance of the Virgo cluster (20 Mp c), the area of in
uence subtends 0 : 01

arcseconds. A di�erent signature that will allow the unambiguous identi�cation of
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galaxies harb oring massive black holes is therefore needed.

If most galaxies have a massive black hole, it is exp ected that most are not in

the AGN phase, in order to b e consistent with the present day AGN luminosity

function. Instead, for reasons which are not presently clear, the black hole is

mostly starved for material and do es not exhibit the traditional features of an

AGN central engine. Occasionally, p erhaps once every 10

3

{10

4

years, a star will

b e disrupted by the central black hole. This event will dump of order 1 M

�

of

material onto the black hole on a time scale of one year. Suddenly, the black hole

will 
are into activity in what was previously an unexceptional galactic nucleus.

The 
are is exp ected to b e mostly observable in the extreme ultraviolet and soft

X{rays. One all{sky survey in this energy range has b een completed ( ROSAT Al l

Sky Survey ). Eventually, another survey will b e p erformed, and, by searching for

transient events, evidence for the existence of massive black holes in most galaxies

could b e found.

An interpretation of the results of such an endeavor requires the mo deling of

a stellar cluster in the vicinity of a massive black hole. With such a mo del, it is

p ossible to predict how often stars will come close enough to the black hole to

b e disrupted. Once a star has disrupted, it is desirable to know the observable

consequences. This requires hydro dynamic simulations of the disruption of the star,

as well as the fallback of the stripp ed debris to the black hole. In this work, we have

considered the disruption of a star using a new Smo othed Particle Hydro dynamics

(SPH) metho d based on spheroidal kernels (Chapter 2). We found that the

traditional SPH metho d using spherical kernels proved to b e inadequate for the

extreme conditions present during deep plunges by a star into the gravitational

�eld of the black hole. In addition, we found that the traditional way in which
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SPH treats viscous heating leads to incorrect results. Our new metho d amends this

problem by incorp orating a viscous heating term designed to give more accurate

results, and we found it to p erform as exp ected. With the simulations presented in

Chapter 3, we have derived cross sections for the stripping of mass from p olytrop es

of index n = 3 = 2 and n = 3. The n = 3 = 2 p olytrop e has an internal structure

resembling low mass, fully convective M dwarfs. These stars form the ma jority

of the mass in stars in the solar neighb orho o d, and therefore, are likely to b e the

most common typ e of star to b e disrupted. Stars of nearly solar mass or greater

can b e represented by a p olytrop e of index n = 3. We have computed encounters

for p olytrop es of two indices in order to map out the b ehavior of all stellar typ es.

As exp ected, the more centrally concentrated n = 3 mo del requires a deep er

plunge b efore it is completely disrupted, as compared to the n = 3 = 2 mo del. An

unanticipated result was that the time scale for the material stripp ed from the

star to fallback to the black hole is fairly indep endent of the impact parameter of

the star. This suggests that there may b e a unique temporal signature of a 
are

resulting from the tidal disruption of a star. However, to con�rm this, it will b e

necessary to hydro dynamically mo del the accretion of the debris onto the black

hole. This problem not only involves the tricky sub ject of an accretion disk; it

must also deal with how a stream of material interacts with itself to form a disk in

the �rst place, a pro cess which involves general relativistic e�ects. It is p ossible

that sup er{Eddington accretion rates may exist, which will only further complicate

the problem. Adding the p ossibility of a Kerr black hole, and the problem b ecomes

even more obfuscated. These problems must b e solved, however, in order to

understand the signature of the accretion of material from a tidally disrupted star.

Once the details of the tidal disruption pro cess are understo o d, it is necessary

to combine this knowledge with a mo del of a stellar cluster around a black hole in
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order to predict the rate at which 
ares will o ccur. A simple comparison of the

rate at which gas is stripp ed from stars in the case of the hard{sphere assumption

and our SPH results (Chapter 4) revealed that previous work predicted the correct

rate of 
ares, but overestimated the rate at which mass is stripp ed by roughly

a factor of two. This result can b e partially understo o d by considering that the

hard{sphere assumption states that the entire star is accreted by the black hole if

it was disrupted, whereas hydro dynamic calculations show that at most one{half

of the star can b e accreted. The simple estimate in Chapter 4 can b e further

improved in several ways. The estimate presented here assumed that the cluster

was a steady{state King mo del, and that the black hole mass did not change. In

a real system, the black hole mass and the dynamics of the cluster would evolve

together. Initially, a small seed black hole will form, and this ob ject will grow as it

accretes mass freed from stars through pro cesses such as stellar collisions and mass

loss prompted by stellar evolution and the tidal disruption of stars. One metho d to

prop erly follow the evolution of the black hole and the stellar cluster requires the

solution of the Fokker{Planck equation. Previous studies using the Fokker{Planck

have used crude and inadequate treatment of tidal disruptions and stellar collisions.

It would b e a go o d time to revisit these issues making use of the large numb er of

numerical simulations that have b een carried out.

Su�cient hydro dynamical studies of the tidal interaction of a star with a black

hole (e.g., this work, Diener et al. 1995; Khokhlov 1993), as well as the collision

of two stars (e.g., Benz & Hills 1987), have b een done to suggest what the next

generation of Fokker{Planck co des should lo ok like. In addition to a more accurate

treatment of the tidal disruption of stars by using our results from Chapter 3, this

new co de should also incorp orate numerical results on the tidal capture of stars

by the black hole as well. These ob jects will p ossibly require several passes close
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to the black hole b efore they lose material. If the time b etween interactions with

the black hole is to o long, however, the star may b e scattered to a di�erent orbit

by interactions with other stars. This is why it would b e interesting to include this

pro cess in a Fokker{Planck co de. Likewise, stellar collisions should b e treated using

the results of numerical simulations. To date, stellar collisions have b een treated

using the analysis of Spitzer & Saslaw (1966). Compared to numerical calculations

by Benz & Hills, for example, this earlier treatment neglects mass loss from

collisions at less than the escap e velo city of the colliding stars. Also, the treatment

by Spitzer and Saslaw provides no information on the energy and momentum

distribution of the debris, which can b e used to predict how long it would take

for the the material to b e accreted by the black hole. Finally, a Fokker-Planck

co de should incorp orate a multimass sp ectrum of stars. The only work so far to do

this is Murphy et al. (1991). Not only is a multimass mo del required to include

interesting physics such as mass segregation, but also one would like to consistently

mo del tidal disruptions and stellar collisions using a realistic mass sp ectrum.

A goal for Fokker{Planck simulations of the growth of a black hole in a stellar

cluster is to try to explain why the AGN phase in most galaxies app ears to only

last several times 10

7

years, yielding a central black hole mass of 10

6

{10

7

M

�

.

With a Fokker{Planck simulation, it is p ossible to follow the luminosity of the

AGN as a function of time, as one can calculate the rate at which mass is freed

from stars by various pro cesses. With a concrete theoretical understanding of the

evolution of an AGN central engine, combined with observational limits set by

X{ray all{sky surveys on the fraction of galaxies which show 
ares resulting from

the tidal disruption of stars, it should b e p ossible to make considerable progress

towards understanding the most p owerful ob jects in the universe.
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